CIESC Journal ›› 2022, Vol. 73 ›› Issue (9): 3815-3827.DOI: 10.11949/0438-1157.20220304
• Reviews and monographs • Previous Articles Next Articles
Wei ZHANG1,2(), Haoyang LI2,3, Chungang XU2(), Xiaosen LI2
Received:
2022-03-02
Revised:
2022-06-02
Online:
2022-10-09
Published:
2022-09-05
Contact:
Chungang XU
通讯作者:
徐纯刚
作者简介:
张炜(1998—),男,硕士研究生,zhangwei@ms.giec.ac.cn
基金资助:
CLC Number:
Wei ZHANG, Haoyang LI, Chungang XU, Xiaosen LI. Research progress on the microscopic mechanism and analytical methods of gas hydrate formation[J]. CIESC Journal, 2022, 73(9): 3815-3827.
张炜, 李昊阳, 徐纯刚, 李小森. 气体水合物生成微观机理及分析方法研究进展[J]. 化工学报, 2022, 73(9): 3815-3827.
Add to citation manager EndNote|Ris|BibTeX
文献 | 微观分析技术手段 | 研究课题 |
---|---|---|
[ | 激光拉曼 | CH4水合物动力学分析 |
[ | 激光拉曼 | 新的笼占有率的计算方法 |
[ | X射线衍射 | 真空中水合物形成原位观测 |
[ | 激光拉曼+X射线衍射 | CH4水合物高压相变过程观测 |
[ | 激光拉曼+X射线衍射 | 客体分子分布情况 |
[ | 中子衍射 | CO水合物亚稳态研究 |
[ | 中子衍射 | 客体分子填充率 |
[ | 中子衍射 | 鉴定1-丙醇+甲烷水合物的结构 |
[ | 固体核磁共振 | 计算笼占有率与置换效率 |
[ | 固体核磁共振 | 验证水合物结构转变 |
[ | 激光拉曼+固体核磁共振 | 水合物置换机理与结构研究 |
[ | 激光拉曼+ X射线衍射+固体核磁共振 | 晶体结构、气体分布与笼占有率 |
[ | 低温扫描电镜 | sⅠ型与sⅡ型水合物表面观测 |
[ | 低温扫描电镜 | CH4和CO2水合物形态观测 |
[ | 磁共振成像 | 沉积物中CH4水合物形成分解观测 |
[ | 磁共振成像 | 气液界面CO2水合物膜形成观测 |
[ | X射线成像 | 煤介质中甲烷水合物形成原位成像 |
[ | X射线成像 | 砂质沉积物中甲烷水合物形态观测 |
[ | X射线成像 | 新的反应速率常数的计算方法 |
Table 1 Application of hydrate micro-analysis technology
文献 | 微观分析技术手段 | 研究课题 |
---|---|---|
[ | 激光拉曼 | CH4水合物动力学分析 |
[ | 激光拉曼 | 新的笼占有率的计算方法 |
[ | X射线衍射 | 真空中水合物形成原位观测 |
[ | 激光拉曼+X射线衍射 | CH4水合物高压相变过程观测 |
[ | 激光拉曼+X射线衍射 | 客体分子分布情况 |
[ | 中子衍射 | CO水合物亚稳态研究 |
[ | 中子衍射 | 客体分子填充率 |
[ | 中子衍射 | 鉴定1-丙醇+甲烷水合物的结构 |
[ | 固体核磁共振 | 计算笼占有率与置换效率 |
[ | 固体核磁共振 | 验证水合物结构转变 |
[ | 激光拉曼+固体核磁共振 | 水合物置换机理与结构研究 |
[ | 激光拉曼+ X射线衍射+固体核磁共振 | 晶体结构、气体分布与笼占有率 |
[ | 低温扫描电镜 | sⅠ型与sⅡ型水合物表面观测 |
[ | 低温扫描电镜 | CH4和CO2水合物形态观测 |
[ | 磁共振成像 | 沉积物中CH4水合物形成分解观测 |
[ | 磁共振成像 | 气液界面CO2水合物膜形成观测 |
[ | X射线成像 | 煤介质中甲烷水合物形成原位成像 |
[ | X射线成像 | 砂质沉积物中甲烷水合物形态观测 |
[ | X射线成像 | 新的反应速率常数的计算方法 |
1 | Christiansen R L, Sloan E D. Mechanisms and kinetics of hydrate formation[J]. Annals of the New York Academy of Sciences, 1994, 715(1): 283-305. |
2 | Koh C A, Sum A K, Sloan E D. Gas hydrates: unlocking the energy from icy cages[J]. Journal of Applied Physics, 2009, 106(6): 061101. |
3 | Xu C G, Li X S, Yan K F, et al. Research progress in hydrate-based technologies and processes in China: a review[J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 1998-2013. |
4 | Dashti H, Yew L Z, Lou X. Recent advances in gas hydrate-based CO2 capture[J]. Journal of Natural Gas Science and Engineering, 2015, 23: 195-207. |
5 | Xu C G, Chen Z Y, Cai J, et al. Study on pilot-scale CO2 separation from flue gas by the hydrate method[J]. Energy and Fuels, 2014, 28(2): 1242-1248. |
6 | Linga P, Kumar R, Englezos P. Gas hydrate formation from hydrogen/carbon dioxide and nitrogen/carbon dioxide gas mixtures[J]. Chemical Engineering Science, 2007, 62(16): 4268-4276. |
7 | Xu C G, Li X S. Research progress of hydrate-based CO2 separation and capture from gas mixtures[J]. RSC Adv., 2014, 4(35): 18301-18316. |
8 | Ma Z W, Zhang P, Bao H S, et al. Review of fundamental properties of CO2 hydrates and CO2 capture and separation using hydration method[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 1273-1302. |
9 | Sloan E D, Fleyfel F. A molecular mechanism for gas hydrate nucleation from ice[J]. AIChE Journal, 1991, 37(9): 1281-1292. |
10 | Christiansen R L, Sloan E D. A compact model for hydrate formation[C]// 74 Gas Processors Association Meeting. 1995. |
11 | Radhakrishnan R, Trout B L. A new approach for studying nucleation phenomena using molecular simulations: application to CO2 hydrate clathrates[J]. The Journal of Chemical Physics, 2002, 117(4): 1786-1796. |
12 | Guo G J, Li M, Zhang Y G, et al. Why can water cages adsorb aqueous methane? A potential of mean force calculation on hydrate nucleation mechanisms[J]. Physical Chemistry Chemical Physics, 2009, 11(44): 10427. |
13 | Guo G J, Zhang Y G, Li M, et al. Can the dodecahedral water cluster naturally form in methane aqueous solutions? A molecular dynamics study on the hydrate nucleation mechanisms[J]. The Journal of Chemical Physics, 2008, 128(19): 194504. |
14 | Jacobson L C, Hujo W, Molinero V. Amorphous precursors in the nucleation of clathrate hydrates[J]. Journal of the American Chemical Society, 2010, 132(33): 11806-11811. |
15 | Jacobson L C, Hujo W, Molinero V. Nucleation pathways of clathrate hydrates: effect of guest size and solubility[J]. The Journal of Physical Chemistry. B, 2010, 114(43): 13796-13807. |
16 | Koh C A, Westacott R E, Zhang W, et al. Mechanisms of gas hydrate formation and inhibition[J]. Fluid Phase Equilibria, 2002, 194/195/196/197: 143-151. |
17 | Yan K F, Li X S, Chen Z Y, et al. The formation of CH4 hydrate in the slit nanopore between the smectite basal surfaces by molecular dynamics simulation[J]. Energy & Fuels, 2018, 32(6): 6467-6474. |
18 | Jiménez-Ángeles F, Firoozabadi A. Nucleation of methane hydrates at moderate subcooling by molecular dynamics simulations[J]. The Journal of Physical Chemistry C, 2014, 118(21): 11310-11318. |
19 | DeFever R S, Sarupria S. Nucleation mechanism of clathrate hydrates of water-soluble guest molecules[J]. The Journal of Chemical Physics, 2017, 147(20): 204503. |
20 | Vatamanu J, Kusalik P G. Observation of two-step nucleation in methane hydrates[J]. Physical Chemistry Chemical Physics: PCCP, 2010, 12(45): 15065-15072. |
21 | Arjun, Berendsen T A, Bolhuis P G. Unbiased atomistic insight in the competing nucleation mechanisms of methane hydrates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(39): 19305-19310. |
22 | Zhang Z C, Walsh M R, Guo G J. Microcanonical molecular simulations of methane hydrate nucleation and growth: evidence that direct nucleation to sI hydrate is among the multiple nucleation pathways[J]. Physical Chemistry Chemical Physics: PCCP, 2015, 17(14): 8870-8876. |
23 | Bi Y F, Porras A, Li T S. Free energy landscape and molecular pathways of gas hydrate nucleation[J]. The Journal of Chemical Physics, 2016, 145(21): 211909. |
24 | Kashchiev D, Firoozabadi A. Nucleation of gas hydrates[J]. Journal of Crystal Growth, 2002, 243(3/4): 476-489. |
25 | Maeda N. Nucleation curve of carbon dioxide hydrate[J]. Energy Procedia, 2019, 158: 5928-5933. |
26 | Maeda N. Nucleation curves of methane hydrate from constant cooling ramp methods[J]. Fuel, 2018, 223: 286-293. |
27 | 杨新, 孙长宇, 粟科华, 等. 温度对多孔介质中甲烷水合物生成过程的影响[J]. 现代化工, 2009, 29(S1): 33-36. |
Yang X, Sun C Y, Su K H, et al. Effect of temperature on methane hydrate formation process in porous media[J]. Modern Chemical Industry, 2009, 29(S1): 33-36. | |
28 | Zatsepina O Y, Riestenberg D, McCallum S D, et al. Influence of water thermal history and overpressure on CO2-hydrate nucleation and morphology[J]. American Mineralogist, 2004, 89(8/9): 1254-1259. |
29 | Arjmandi M, Tohidi B, Danesh A, et al. Is subcooling the right driving force for testing low-dosage hydrate inhibitors? [J]. Chemical Engineering Science, 2005, 60(5): 1313-1321. |
30 | Shestakov V A, Sagidullin A K, Stoporev A S, et al. Analysis of methane hydrate nucleation in water-in-oil emulsions: isothermal vs constant cooling ramp method and new method for data treatment[J]. Journal of Molecular Liquids, 2020, 318: 114018. |
31 | Englezos P, Kalogerakis N, Dholabhai P D, et al. Kinetics of formation of methane and ethane gas hydrates[J]. Chemical Engineering Science, 1987, 42(11): 2647-2658. |
32 | Teng H, Yamasaki A. Hydrate formation on surfaces of buoyant liquid CO2 drops in a counterflow water tunnel[J]. Energy & Fuels, 1999, 13(3): 624-628. |
33 | Walsh M R, Beckham G T, Koh C A, et al. Methane hydrate nucleation rates from molecular dynamics simulations: effects of aqueous methane concentration, interfacial curvature, and system size[J]. The Journal of Physical Chemistry C, 2011, 115(43): 21241-21248. |
34 | Abay H K, Svartaas T M. Multicomponent gas hydrate nucleation: the effect of the cooling rate and composition[J]. Energy & Fuels, 2011, 25(1): 42-51. |
35 | Duan Z H, Møller N, Greenberg J, et al. The prediction of methane solubility in natural waters to high ionic strength from 0 to 250℃ and from 0 to 1600 bar[J]. Geochimica et Cosmochimica Acta, 1992, 56(4): 1451-1460. |
36 | Nada H. Growth mechanism of a gas clathrate hydrate from a dilute aqueous gas solution: a molecular dynamics simulation of a three-phase system[J]. The Journal of Physical Chemistry. B, 2006, 110(33): 16526-16534. |
37 | Sloan E D, Koh C A. Clathrate Hydrates of Natural Gases[M]. 3rd ed. Boca Raton: CRC Press, 2007. |
38 | Makogon Y F. Hydrates of Hydrocarbomns[M]. Oklahoma: Penn Well Publishing Company, 1997. |
39 | Sugaya M, Mori Y H. Behavior of clathrate hydrate formation at the boundary of liquid water and a fluorocarbon in liquid or vapor state[J]. Chemical Engineering Science, 1996, 51(13): 3505-3517. |
40 | Sun C Y, Peng B Z, Dandekar A, et al. Studies on hydrate film growth[J]. Annual Reports Section C (Physical Chemistry), 2010, 106: 77. |
41 | Knox W G, Hess M, Jones G E, et al. The hydrate process[J]. Chemical Engineering Progress, 1961, 57(2): 66-71. |
42 | Kumar A, Bhattacharjee G, Kulkarni B D, et al. Role of surfactants in promoting gas hydrate formation[J]. Industrial & Engineering Chemistry Research, 2015, 54(49): 12217-12232. |
43 | Dicharry C, Duchateau C, Asbaï H, et al. Carbon dioxide gas hydrate crystallization in porous silica gel particles partially saturated with a surfactant solution[J]. Chemical Engineering Science, 2013, 98: 88-97. |
44 | Sun C Y, Chen G J, Yang L Y. Interfacial tension of methane + water with surfactant near the hydrate formation conditions[J]. Journal of Chemical & Engineering Data, 2004, 49(4): 1023-1025. |
45 | 张学民, 李洋, 姚泽, 等. 表面活性剂对气体水合物生成过程的定量影响[J]. 过程工程学报, 2018, 18(2): 356-360. |
Zhang X M, Li Y, Yao Z, et al. Quantitative influence of surfactant on the formation process for gas hydrate[J]. The Chinese Journal of Process Engineering, 2018, 18(2): 356-360. | |
46 | 张保勇, 吴强, 王永敬. 表面活性剂对气体水合物生成诱导时间的作用机理[J]. 吉林大学学报(工学版), 2007, 37(1): 239-244. |
Zhang B Y, Wu Q, Wang Y J. Reaction mechanism between surfactant and induction time of gas hydrate formation[J]. Journal of Jilin University Engineering and Technology Edition, 2007, 37(1): 239-244. | |
47 | Zhong Y, Rogers R E. Surfactant effects on gas hydrate formation[J]. Chemical Engineering Science, 2000, 55(19): 4175-4187. |
48 | Profio P D, Arca S, Germani R, et al. Surfactant promoting effects on clathrate hydrate formation: are micelles really involved? [J]. Chemical Engineering Science, 2005, 60(15): 4141-4145. |
49 | Veluswamy H P, Chen J Y, Linga P. Surfactant effect on the kinetics of mixed hydrogen/propane hydrate formation for hydrogen storage as clathrates[J]. Chemical Engineering Science, 2015, 126: 488-499. |
50 | Zhang J S, Lee S, Lee J W. Does SDS micellize under methane hydrate-forming conditions below the normal Krafft point? [J]. Journal of Colloid and Interface Science, 2007, 315(1): 313-318. |
51 | Watanabe K, Imai S, Mori Y H. Surfactant effects on hydrate formation in an unstirred gas/liquid system: an experimental study using HFC-32 and sodium dodecyl sulfate[J]. Chemical Engineering Science, 2005, 60(17): 4846-4857. |
52 | Wang F, Jia Z Z, Luo S J, et al. Effects of different anionic surfactants on methane hydrate formation[J]. Chemical Engineering Science, 2015, 137: 896-903. |
53 | Gayet P, Dicharry C, Marion G, et al. Experimental determination of methane hydrate dissociation curve up to 55 MPa by using a small amount of surfactant as hydrate promoter[J]. Chemical Engineering Science, 2005, 60(21): 5751-5758. |
54 | Daniel-David D, Guerton F, Dicharry C, et al. Hydrate growth at the interface between water and pure or mixed CO2/CH4 gases: influence of pressure, temperature, gas composition and water-soluble surfactants[J]. Chemical Engineering Science, 2015, 132: 118-127. |
55 | Molokitina N S, Nesterov A N, Podenko L S, et al. Carbon dioxide hydrate formation with SDS: further insights into mechanism of gas hydrate growth in the presence of surfactant[J]. Fuel, 2019, 235: 1400-1411. |
56 | Zhang G D, Zhang R C, Wang F. Fast formation kinetics of methane hydrates loaded by silver nanoparticle coated activated carbon (Ag-NP@AC)[J]. Chemical Engineering Journal, 2021, 417: 129206. |
57 | Li J P, Liang D Q, Guo K H, et al. Formation and dissociation of HFC134a gas hydrate in nano-copper suspension[J]. Energy Conversion and Management, 2006, 47(2): 201-210. |
58 | Ma S H, Pan Z, Li P, et al. Experimental study on preparation of natural gas hydrate by crystallization[J]. Ship Building of China, 2017, 58(1): 226-232. |
59 | Wang X J, Zhu D S, Yang S. Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids[J]. Chemical Physics Letters, 2009, 470(1/2/3): 107-111. |
60 | Arjang S, Manteghian M, Mohammadi A. Effect of synthesized silver nanoparticles in promoting methane hydrate formation at 4.7 MPa and 5.7 MPa[J]. Chemical Engineering Research and Design, 2013, 91(6): 1050-1054. |
61 | Rahmati-Abkenar M, Manteghian M, Pahlavanzadeh H. Experimental and theoretical investigation of methane hydrate induction time in the presence of triangular silver nanoparticles[J]. Chemical Engineering Research and Design, 2017, 120: 325-332. |
62 | Cheng Z C, Xu H Z, Wang S J, et al. Effect of nanoparticles as a substitute for kinetic additives on the hydrate-based CO2 capture[J]. Chemical Engineering Journal, 2021, 424: 130329. |
63 | 赵国昌, 曹磊, 宋丽萍, 等. 纳米流体导热机理研究分析[J]. 沈阳航空航天大学学报, 2013, 30(4): 7-11. |
Zhao G C, Cao L, Song L P, et al. Analysis of research on heat conduction mechanisms of nanofluids[J]. Journal of Shenyang Aerospace University, 2013, 30(4): 7-11. | |
64 | 刘妮, 洪春芳, 柳秀婷. 纳米粒子对CO2水合物导热性能的影响[J]. 化工学报, 2017, 68(9): 3404-3408. |
Liu N, Hong C F, Liu X T. Effects of nanoparticles on CO2 hydrate thermal conductivity[J]. CIESC Journal, 2017, 68(9): 3404-3408. | |
65 | Said S, Govindaraj V, Herri J M, et al. A study on the influence of nanofluids on gas hydrate formation kinetics and their potential: application to the CO2 capture process[J]. Journal of Natural Gas Science and Engineering, 2016, 32: 95-108. |
66 | Pasieka J, Coulombe S, Servio P. Investigating the effects of hydrophobic and hydrophilic multi-wall carbon nanotubes on methane hydrate growth kinetics[J]. Chemical Engineering Science, 2013, 104: 998-1002. |
67 | Sum A K, Burruss R C, Sloan E D. Measurement of clathrate hydrates via Raman spectroscopy[J]. The Journal of Physical Chemistry B, 1997, 101(38): 7371-7377. |
68 | Yoon J H, Kawamura T, Yamamoto Y, et al. Transformation of methane hydrate to carbon dioxide hydrate: in situ Raman spectroscopic observations[J]. The Journal of Physical Chemistry A, 2004, 108(23): 5057-5059. |
69 | Truong-Lam H S, Seo S, Kim S, et al. In situ Raman study of the formation and dissociation kinetics of methane and methane/propane hydrates[J]. Energy & Fuels, 2020, 34(5): 6288-6297. |
70 | Chen W Q, Hartman R L. Methane hydrate intrinsic dissociation kinetics measured in a microfluidic system by means of in situ Raman spectroscopy[J]. Energy & Fuels, 2018, 32(11): 11761-11771. |
71 | Chou I M, Sharma A, Burruss R C, et al. Transformations in methane hydrates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(25): 13484-13487. |
72 | Kadobayashi H, Hirai H, Ohfuji H, et al. Transition mechanism of sH to filled-ice Ih structure of methane hydrate under fixed pressure condition[J]. Journal of Physics: Conference Series, 2017, 950: 042044. |
73 | Kadobayashi H, Hirai H, Ohfuji H, et al. Structural evolution of methane hydrate under pressures up to 134 GPa[J]. The Journal of Chemical Physics, 2020, 152(19): 194308. |
74 | Hirai H, Kadobayashi H, Hirao N, et al. Time-resolved X-ray diffraction and Raman studies of the phase transition mechanisms of methane hydrate[J]. The Journal of Chemical Physics, 2015, 142(2): 024707. |
75 | Liu C H, Wu Q, Zhang B Y, et al. Raman spectroscopy study on ternary model coal mine methane hydrates[J]. ACS Omega, 2021, 6(16): 10709-10714. |
76 | Zhou X B, Zang X Y, Long Z, et al. Multiscale analysis of the hydrate based carbon capture from gas mixtures containing carbon dioxide[J]. Scientific Reports, 2021, 11: 9197. |
77 | Stackelberg M V, Müller H R. On the structure of gas hydrates[J]. The Journal of Chemical Physics, 1951, 19(10): 1319-1320. |
78 | Lu H L, Moudrakovski I, Riedel M, et al. Occurrence and structural characterization of gas hydrates associated with a cold vent field, offshore Vancouver Island[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B10): B10204. |
79 | Udachin K A, Ratcliffe C I, Ripmeester J A. Structure, composition, and thermal expansion of CO2 hydrate from single crystal X-ray diffraction measurements[J]. The Journal of Physical Chemistry B, 2001, 105(19): 4200-4204. |
80 | Lee J W, Kim D Y, Lee H E. Phase behavior and structure transition of the mixed methane and nitrogen hydrates[J]. Korean Journal of Chemical Engineering, 2006, 23(2): 299-302. |
81 | Hester K C, Huo Z, Ballard A L, et al. Thermal expansivity for sI and sII clathrate hydrates[J]. The Journal of Physical Chemistry. B, 2007, 111(30): 8830-8835. |
82 | Takeya S, Hondoh T, Uchida T. In situ observation of CO2 hydrate by X-ray diffraction[J]. Annals of the New York Academy of Sciences, 2000, 912(1): 973-982. |
83 | Takeya S, Shimada W, Kamata Y, et al. In situ X-ray diffraction measurements of the self-preservation effect of CH4 hydrate[J]. The Journal of Physical Chemistry A, 2001, 105(42): 9756-9759. |
84 | Wilkinson M K, Wollan E O, Koehler W C. Neutron diffraction[J]. Annual Review of Nuclear Science, 1961, 11: 303-348. |
85 | Carvalho P H B B, Mace A, Andersson O, et al. Elucidating the guest disorder in structure Ⅱ argon hydrate—a neutron diffraction isotopic substitution study[J]. Journal of Solid State Chemistry, 2020, 285: 121220. |
86 | Klapproth A, Piltz R O, Kennedy S J, et al. Kinetics of sⅡ and mixed sⅠ/sⅡ, gas hydrate growth for a methane/propane mixture using neutron diffraction[J]. The Journal of Physical Chemistry C, 2019, 123(5): 2703-2715. |
87 | Chiari G, Ferraris G. The water molecule in crystalline hydrates studied by neutron diffraction[J]. Acta Crystallographica Section B, 1982, 38(9): 2331-2341. |
88 | Chazallon B, Kuhs W F. In situ structural properties of N 2 -, O 2 -, and air-clathrates by neutron diffraction[J]. The Journal of Chemical Physics, 2002, 117(1): 308-320. |
89 | Kuhs W F, Chazallon B, Radaelli P G, et al. Cage occupancy and compressibility of deuterated N2-clathrate hydrate by neutron diffraction[J]. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry 1997, 29(1): 65-77. |
90 | Rojas Y, Lou X. Instrumental analysis of gas hydrates properties[J]. Asia-Pacific Journal of Chemical Engineering, 2010, 5(2): 310-323. |
91 | Liu Y Z, Zhang L X, Yang L, et al. Behaviors of CO2 hydrate formation in the presence of acid-dissolvable organic matters[J]. Environmental Science & Technology, 2021, 55(9): 6206-6213. |
92 | Pandey J S, Karantonidis C, Ouyang Q, et al. Cyclic depressurization-driven enhanced CH4 recovery after CH4-CO2 hydrate swapping[J]. Energy & Fuels, 2021, 35(11): 9521-9537. |
93 | Li Z, Zhong D L, Zheng W Y, et al. Morphology and kinetic investigation of TBAB/TBPB semiclathrate hydrates formed with a CO2+CH4 gas mixture[J]. Journal of Crystal Growth, 2019, 511: 79-88. |
94 | Wang S J, Cheng Z C, Liu Q B, et al. Microscope insights into gas hydrate formation and dissociation in sediments by using microfluidics[J]. Chemical Engineering Journal, 2021, 425: 130633. |
95 | Kuhs W F, Klapproth A, Gotthardt F, et al. The formation of meso- and macroporous gas hydrates[J]. Geophysical Research Letters, 2000, 27(18): 2929-2932. |
96 | Zhao J F, Liu Y Z, Yang L, et al. Organics-coated nanoclays further promote hydrate formation kinetics[J]. The Journal of Physical Chemistry Letters, 2021, 12(13): 3464-3467. |
97 | Denning S, Lucero J M, Majid A A A, et al. Porous organic cage CC3: an effective promoter for methane hydrate formation for natural gas storage[J]. The Journal of Physical Chemistry C, 2021, 125(37): 20512-20521. |
98 | Huang X, Li Z C, Deng Y J, et al. Effect of micro- and nanobubbles on the crystallization of THF hydrate based on the observation by atomic force microscopy[J]. The Journal of Physical Chemistry C, 2020, 124(25): 13966-13975. |
99 | 彭力, 李维, 宁伏龙, 等. 基于原子力显微镜的四氢呋喃水合物微观力学测试[J]. 中国科学: 技术科学, 2020, 50(1): 31-40. |
Peng L, Li W, Ning F L, et al. Micromechanical tests of tetrahydrofuran hydrate using atomic force microscope[J]. Scientia Sinica (Technologica), 2020, 50(1): 31-40. | |
100 | Hirai S, Kuwano K, Ogawa K, et al. High-pressure magnetic resonance imaging up to 40 MPa[J]. Magnetic Resonance Imaging, 2000, 18(2): 221-225. |
101 | Moudrakovski I L, Ratcliffe C I, McLaurin G E, et al. Hydrate layers on ice particles and superheated ice: a 1H NMR microimaging study[J]. The Journal of Physical Chemistry A, 1999, 103(26): 4969-4972. |
102 | Zuniga A R, Li M, Aman Z M, et al. NMR-compatible sample cell for gas hydrate studies in porous media[J]. Energy & Fuels, 2020, 34(10): 12388-12398. |
103 | Lv J C, Jiang L L, Mu H L, et al. MRI investigation of hydrate pore habits and dynamic seepage characteristics in natural gas hydrates sand matrix[J]. Fuel, 2021, 303: 121287. |
104 | Takeya S, Honda K, Kawamura T, et al. Imaging and density mapping of tetrahydrofuran clathrate hydrates by phase-contrast X-ray computed tomography[J]. Applied Physics Letters, 2007, 90(8): 081920. |
105 | Takeya S, Honda K, Yoneyama A, et al. Observation of low-temperature object by phase-contrast X-ray imaging: nondestructive imaging of air clathrate hydrates at 233K[J]. Review of Scientific Instruments, 2006, 77(5): 053705. |
106 | Takeya S, Yoneyama A, Ueda K, et al. Nondestructive imaging of anomalously preserved methane clathrate hydrate by phase contrast X-ray imaging[J]. The Journal of Physical Chemistry C, 2011, 115(32): 16193-16199. |
107 | Kerkar P B, Horvat K, Jones K W, et al. Imaging methane hydrates growth dynamics in porous media using synchrotron X-ray computed microtomography[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(12): 4759-4768. |
108 | Noguchi N, Yonezawa T, Yokoi Y, et al. Infrared and Raman spectroscopic study of methane clathrate hydrates at low temperatures and high pressures: dynamics and cage occupancy of methane[J]. The Journal of Physical Chemistry C, 2021, 125(1): 189-200. |
109 | Hiraga Y, Sasagawa T, Yamamoto S, et al. A precise deconvolution method to derive methane hydrate cage occupancy ratios using Raman spectroscopy[J]. Chemical Engineering Science, 2020, 214: 115361. |
110 | Bauer R P C, Ravichandran A, Tse J S, et al. In situ X-ray diffraction study on hydrate formation at low temperature in a high vacuum[J]. The Journal of Physical Chemistry C, 2021, 125(48): 26892-26900. |
111 | Beam J, Yang J, Liu J, et al. Elasticity of methane hydrate phases at high pressure[J]. The Journal of Chemical Physics, 2016, 144(15): 154501. |
112 | Grim R G, Kerkar P B, Shebowich M, et al. Synthesis and characterization of sI clathrate hydrates containing hydrogen[J]. The Journal of Physical Chemistry C, 2012, 116(34): 18557-18563. |
113 | Pétuya C, Martin-Gondre L, Aurel P, et al. Unraveling the metastability of the sⅠ and sⅡ carbon monoxide hydrate with a combined DFT-neutron diffraction investigation[J]. The Journal of Chemical Physics, 2019, 150(18): 184705. |
114 | Hoshikawa A, Matsukawa T, Ishigaki T. Evaluation of filling rate of methane in methane-propane hydrate by neutron powder diffraction[J]. Physica B: Condensed Matter, 2018, 551: 274-277. |
115 | Cha M J, Shin K, Lee H E. Structure identification of binary 1-propanol+methane hydrate using neutron powder diffraction[J]. Korean Journal of Chemical Engineering, 2017, 34(9): 2514-2518. |
116 | Cha M J, Shin K, Lee H E, et al. Kinetics of methane hydrate replacement with carbon dioxide and nitrogen gas mixture using in situ NMR spectroscopy[J]. Environmental Science & Technology, 2015, 49(3): 1964-1971. |
117 | Mok J, Choi W, Seo Y. Time-dependent observation of a cage-specific guest exchange in sI hydrates for CH4 recovery and CO2 sequestration[J]. Chemical Engineering Journal, 2020, 389: 124434. |
118 | Xu C G, Cai J, Lin F H, et al. Raman analysis on methane production from natural gas hydrate by carbon dioxide-methane replacement[J]. Energy, 2015, 79: 111-116. |
119 | Kumar R, Englezos P, Moudrakovski I, et al. Structure and composition of CO2/H2 and CO2/H2/C3H8 hydrate in relation to simultaneous CO2 capture and H2 production[J]. AIChE Journal, 2009, 55(6): 1584-1594. |
120 | Sun J Y, Li C F, Hao X L, et al. Study of the surface morphology of gas hydrate[J]. Journal of Ocean University of China, 2020, 19(2): 331-338. |
121 | Klapproth A, Goreshnik E, Staykova D, et al. Structural studies of gas hydrates[J]. Canadian Journal of Physics, 2003, 81(1/2): 503-518. |
122 | Zhang Y Y, Zhao Y C, Lei X, et al. Quantitatively study on methane hydrate formation/decomposition process in hydrate-bearing sediments using low-field MRI[J]. Fuel, 2020, 262: 116555. |
123 | Zhao Y C, Lei X, Zheng J N, et al. High resolution MRI studies of CO2 hydrate formation and dissociation near the gas-water interface[J]. Chemical Engineering Journal, 2021, 425: 131426. |
124 | Nikitin V V, Fokin M I, Dugarov G A, et al. Dynamic in situ imaging of methane hydrate formation in coal media[J]. Fuel, 2021, 298: 120699. |
125 | Le T X, Bornert M, Aimedieu P, et al. An experimental investigation on methane hydrate morphologies and pore habits in sandy sediment using synchrotron X-ray computed tomography[J]. Marine and Petroleum Geology, 2020, 122: 104646. |
126 | Liang H Y, Yang L, Song Y C, et al. New approach for determining the reaction rate constant of hydrate formation via X-ray computed tomography[J]. The Journal of Physical Chemistry C, 2021, 125(1): 42-48. |
[1] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[2] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[3] | Juhui CHEN, Qian ZHANG, Lingfeng SHU, Dan LI, Xin XU, Xiaogang LIU, Chenxi ZHAO, Xifeng CAO. Study on flow characteristics of nanoparticles in a rotating fluidized bed based on DEM method [J]. CIESC Journal, 2023, 74(6): 2374-2381. |
[4] | Guojuan QU, Tao JIANG, Tao LIU, Xiang MA. Modulating luminescent behaviors of Au nanoclusters via supramolecular strategies [J]. CIESC Journal, 2023, 74(1): 397-407. |
[5] | Xintong HUANG, Yuhao GENG, Hengyuan LIU, Zhuo CHEN, Jianhong XU. Research progress on new functional nanoparticles prepared by microfluidic technology [J]. CIESC Journal, 2023, 74(1): 355-364. |
[6] | Xin ZHANG, Rui XU, Xinyu LU, Yong'an NIU. Synthesis and photocatalysis of SiO2@BiOCl-Bi24O31Cl10 core-shell microspheres [J]. CIESC Journal, 2022, 73(8): 3636-3646. |
[7] | Chengyi AI, Jinshuo QIAO, Zhenhuan WANG, Wang SUN, Kening SUN. Investigation on PrBaFe2O6-δ anode material with in-situ FeNi nanoparticle in direct carbon solid oxide fuel cell [J]. CIESC Journal, 2022, 73(8): 3708-3719. |
[8] | Haihang TONG, Dezhi SHI, Jiayu LIU, Huayi CAI, Dan LUO, Fei CHEN. Research progress on dark fermentative bio-hydrogen production from lignocellulose assisted by metal nanoparticles [J]. CIESC Journal, 2022, 73(4): 1417-1435. |
[9] | Miao ZHANG, Honghai YANG, Yong YIN, Yue XU, Junjie SHEN, Xincheng LU, Weigang SHI, Jun WANG. Start-up and heat transfer characteristics of a pulsating heat pipe with graphene oxide nanofluids [J]. CIESC Journal, 2022, 73(3): 1136-1146. |
[10] | Yingjie FEI, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Breakup dynamics of bubbles stabilized by nanoparticles with permanent obstruction in a microfluidic Y-junction [J]. CIESC Journal, 2022, 73(1): 213-221. |
[11] | Wenli GAO, Zhong XIN. Research on promotion of Fe in Ni/SBA-16 catalyzing CO methanation at low temperature [J]. CIESC Journal, 2022, 73(1): 241-254. |
[12] | Lihui WANG, Huan LIU, Heyu LI, Xiaobing ZHENG, Yanjun JIANG, Jing GAO. Preparation and application of core-shell hydrophobic magnetic dendritic fibrous organosilica immobilized lipase [J]. CIESC Journal, 2021, 72(9): 4861-4871. |
[13] | CHEN Tingting, YIN Jiongting, XU Yingjie. Research progress of ionic liquids in preparation of ZnO nanomaterials [J]. CIESC Journal, 2021, 72(5): 2436-2447. |
[14] | QI Cong, LI Ke'ao, LI Chunyang. Influence of micro-rib structures on thermal performance of nanofluids flowing around circular cylinders [J]. CIESC Journal, 2021, 72(4): 2006-2017. |
[15] | LIU Changhui, LIU Hongli, ZHANG Tianjian, RAO Zhonghao. Preparation and thermal physical properties of nanofluids based on a urea/choline chloride deep eutectic solvent system [J]. CIESC Journal, 2021, 72(3): 1333-1341. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||