CIESC Journal ›› 2023, Vol. 74 ›› Issue (12): 4863-4880.DOI: 10.11949/0438-1157.20231119
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Siyuan XU(), Dong PAN(), Zhaohui JIANG, Shaoqiang LIU, Haoyang YU
Received:
2023-10-30
Revised:
2023-12-02
Online:
2024-02-19
Published:
2023-12-25
Contact:
Dong PAN
通讯作者:
潘冬
作者简介:
徐思远(2000—),男,硕士研究生,csuxsy0614@csu.edu.cn
基金资助:
CLC Number:
Siyuan XU, Dong PAN, Zhaohui JIANG, Shaoqiang LIU, Haoyang YU. Modeling method of blast furnace wall temperature field based on steady-state heat transfer analysis[J]. CIESC Journal, 2023, 74(12): 4863-4880.
徐思远, 潘冬, 蒋朝辉, 刘少强, 余浩洋. 基于稳态传热分析的高炉炉壁温度场建模方法[J]. 化工学报, 2023, 74(12): 4863-4880.
Add to citation manager EndNote|Ris|BibTeX
物理结构 | 数值 | 物理结构 | 数值 |
---|---|---|---|
炉壳厚度 | 60 mm | 第7层冷却壁高度 | 2290 mm |
填充层厚度 | 100 mm | 燕尾槽厚度(径向方向) | 40 mm |
冷却壁本体厚度 | 125 mm | 燕尾槽宽度(高度方向) | 55 mm |
耐火砖厚度(初始厚度) | 130 mm | 燕尾槽个数 | 21个 |
热电偶埋点与冷却壁热面距离 | 65 mm | 相邻燕尾槽之间的距离 | 52 mm |
冷却水管间距 | 213.2 mm | 组成冷却水管孔型的圆直径 | 22.5 mm |
冷却壁外边缘与冷却水管中心距离 | 42.5 mm | 单块冷却壁的圆周角 | 7.5° |
单块冷却壁的内弦长 | 801.2 mm | 单块冷却壁的外弦长 | 817.5 mm |
冷却壁外边缘与高炉中心线径向距离 | 6555 mm | 渣皮厚度 | 20 mm |
Table 1 The main physical structure and size of furnace wall
物理结构 | 数值 | 物理结构 | 数值 |
---|---|---|---|
炉壳厚度 | 60 mm | 第7层冷却壁高度 | 2290 mm |
填充层厚度 | 100 mm | 燕尾槽厚度(径向方向) | 40 mm |
冷却壁本体厚度 | 125 mm | 燕尾槽宽度(高度方向) | 55 mm |
耐火砖厚度(初始厚度) | 130 mm | 燕尾槽个数 | 21个 |
热电偶埋点与冷却壁热面距离 | 65 mm | 相邻燕尾槽之间的距离 | 52 mm |
冷却水管间距 | 213.2 mm | 组成冷却水管孔型的圆直径 | 22.5 mm |
冷却壁外边缘与冷却水管中心距离 | 42.5 mm | 单块冷却壁的圆周角 | 7.5° |
单块冷却壁的内弦长 | 801.2 mm | 单块冷却壁的外弦长 | 817.5 mm |
冷却壁外边缘与高炉中心线径向距离 | 6555 mm | 渣皮厚度 | 20 mm |
修正前/后 | MAE | RMSE | MRE/% |
---|---|---|---|
修正前 | 34.667 | 38.373 | 18.623 |
修正后 | 3.157 | 3.786 | 4.359 |
Table 2 Furnace wall temperature field correction model experimental error statistics
修正前/后 | MAE | RMSE | MRE/% |
---|---|---|---|
修正前 | 34.667 | 38.373 | 18.623 |
修正后 | 3.157 | 3.786 | 4.359 |
1 | Dong H, Liu Y, Wang L J, et al. Roadmap of China steel industry in the past 70 years[J]. Ironmaking & Steelmaking, 2019, 46(10): 922-927. |
2 | 宋菁华, 杨春节, 周哲, 等. 改进型EMD-Elman神经网络在铁水硅含量预测中的应用[J]. 化工学报, 2016, 67(3): 729-735. |
Song J H, Yang C J, Zhou Z, et al. Application of improved EMD-Elman neural network to predict silicon content in hot metal[J]. CIESC Journal, 2016, 67(3): 729-735. | |
3 | 朱雄卓, 张瀚文, 杨春节. 基于高斯混合模型的MWPCA高炉异常监测算法[J]. 化工学报, 2021, 72(3): 1539-1548. |
Zhu X Z, Zhang H W, Yang C J. MWPCA blast furnace anomaly monitoring algorithm based on Gaussian mixture model[J]. CIESC Journal, 2021, 72(3): 1539-1548. | |
4 | Peacey J G, Davenport W G. The Iron Blast Furnace: Theory and Practice[M]. Holland: Elsevier, 2016. |
5 | 薛曦. 基于ANSYS的大型高炉炉壳结构有限元分析[D]. 西安: 西安建筑科技大学, 2016. |
Xue X. Finite element analysis of shell structure of large blast furnace based on ANSYS[D]. Xi'an: Xi'an University of Architecture and Technology, 2016. | |
6 | 杨新龙. 热-结构耦合作用下高炉炉壳厚度优化分析[D]. 西安: 西安建筑科技大学, 2012. |
Yang X L. Optimization analysis of blast furnace shell thickness under thermal-structural coupling[D]. Xi'an: Xi'an University of Architecture and Technology, 2012. | |
7 | Xu X, Wu L J, Lu Z A. Performance optimization criterion of blast furnace stave[J]. International Journal of Heat and Mass Transfer, 2017, 105: 102-108. |
8 | Vázquez-Fernández S, García-Lengomín Pieiga A, Lausín-Gónzalez C, et al. Mathematical modelling and numerical simulation of the heat transfer in a trough of a blast furnace[J]. International Journal of Thermal Sciences, 2019, 137: 365-374. |
9 | Zhang H, Jiao K X, Zhang J L, et al. A new method for evaluating cooling capacity of blast furnace cooling stave[J]. Ironmaking & Steelmaking, 2019, 46(7): 671-681. |
10 | 刘永. 铸铁冷却壁稳态传热分析[J]. 河北冶金, 2017(7): 13-18, 23. |
Liu Y. Steady-state-heat transfer analysis of cast iron cooling wall[J]. Hebei Metallurgy, 2017(7): 13-18, 23. | |
11 | Li F G, Zhang J, Guo R. Study on the influence of materials on heat transfer characteristics of blast furnace cooling staves[C]//8th International Symposium on High-Temperature Metallurgical Processing. Cham: Springer, 2017: 799-810. |
12 | Wu L J, Xu X, Zhou W G, et al. Heat transfer analysis of blast furnace stave[J]. International Journal of Heat and Mass Transfer, 2008, 51(11/12): 2824-2833. |
13 | Shen L, Chen Z P, Jiang Z H, et al. Soft sensor modeling of blast furnace wall temperature based on temporal-spatial dimensional finite-element extrapolation[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-14. |
14 | Li Y, Chen L Y, Ma J C. Numerical study on the relationship between the localized depression erosion of a commercial blast furnace hearth lining and the heat flux of cooling staves[J]. IEEE Access, 2019, 7: 60984-60994. |
15 | Su F Y, Song R, Ni P W, et al. Numerical simulation for inverse heat conduction problem of single-layer lining erosion of blast furnace[J]. Frontiers in Heat and Mass Transfer, 2019, 12: 1-5. |
16 | 石琳, 程素森, 左海滨. 高炉炉衬侵蚀边界识别的数值模拟[J]. 钢铁研究学报, 2006, 18(4): 1-5. |
Shi L, Cheng S S, Zuo H B. Numerical simulation of erosion boundary identification of blast furnace lining[J]. Journal of Iron and Steel Research, 2006, 18(4): 1-5. | |
17 | Swartling M, Sundelin B, Tilliander A, et al. Heat transfer modelling of a blast furnace hearth[J]. Steel Research International, 2010, 81(3): 186-196. |
18 | 安剑奇, 彭凯, 曹卫华, 等. 基于动态神经网络的高炉炉壁不完备温度检测信息软测量方法[J]. 化工学报, 2016, 67(3): 903-911. |
An J Q, Peng K, Cao W H, et al. A soft-sensing method for missing temperature information based on dynamic neural network on BF wall[J]. CIESC Journal, 2016, 67(3): 903-911. | |
19 | 马丁·戈德斯. 现代高炉炼铁[M]. 北京: 中国科学技术出版社, 2021. |
Godes M. Modern Blast Furnace Ironmaking[M]. Beijing: China Science and Technology Press, 2021. | |
20 | Qian Z, Du Z H, Wu L J. Heat transfer analysis of blast furnace cast steel cooling stave[J]. Ironmaking & Steelmaking, 2007, 34(5): 415-421. |
21 | 刘增勋. 高炉冷却壁热力耦合分析[D]. 沈阳: 东北大学, 2009. |
Liu Z X. Thermal-mechanical coupling analysis of blast furnace cooling stave[D]. Shenyang: Northeastern University, 2009. | |
22 | 贾艳, 李文兴. 高炉炼铁基础知识[M]. 2版. 北京: 冶金工业出版社, 2010. |
Jia Y, Li W X. Basic Knowledge of Blast Furnace Ironmaking[M]. 2nd ed. Beijing: Metallurgical Industry Press, 2010. | |
23 | Dong X F, Zulli P. Prediction of blast furnace hearth condition(part Ⅰ): A steady state simulation of hearth condition during normal operation[J]. Ironmaking & Steelmaking, 2020, 47(3): 307-315. |
24 | Dong X F, Zulli P, Biasutti M. Prediction of blast furnace hearth condition(part Ⅱ): A transient state simulation of hearth condition during blast furnace shutdown[J]. Ironmaking & Steelmaking, 2020, 47(5): 561-566. |
25 | Zhang L, Zhang J L, Zuo H B, et al. Temperature field distribution of a dissected blast furnace[J]. ISIJ International, 2019, 59(6): 1027-1032. |
26 | Liu Q, Cheng S S, Niu J P, et al. Numerical simulation of the copper steel composite stave heat transfer in the belly and lower shaft region of the blast furnace[J]. Characterization of Minerals, Metals, and Materials 2015, 2016: 743-753. |
27 | Liu Q, Cheng S S. Heat transfer and thermal deformation analyses of a copper stave used in the belly and lower shaft area of a blast furnace[J]. International Journal of Thermal Sciences, 2016, 100: 202-212. |
28 | 胡先. 高炉热风炉操作技术[M]. 北京: 冶金工业出版社, 2006. |
Hu X. Operation Technology of Blast Furnace Hot Blast Stove[M]. Beijing: Metallurgical Industry Press, 2006. | |
29 | 范广权. 高炉炼铁操作[M]. 北京: 冶金工业出版社, 2008. |
Fan G Q. Blast Furnace Ironmaking Operation[M]. Beijing: Metallurgical Industry Press, 2008. | |
30 | 刘云彩. 高炉渣皮脱落分析[J]. 中国冶金, 2014, 24(12): 32-35. |
Liu Y C. Analysis of blast furnace slag fall-off[J]. China Metallurgy, 2014, 24(12): 32-35. | |
31 | An J Q, Zhang J L, Wu M, et al. Soft-sensing method for slag-crust state of blast furnace based on two-dimensional decision fusion[J]. Neurocomputing, 2018, 315: 405-411. |
32 | Heinrich P, Hille H, Bachhofen H J, et al. Copper blast furnace staves developed for multiple campaigns[J]. Iron and Steel Engineer(USA), 1992, 69(2): 49-55. |
33 | Zhang S F, Wen L Y, Bai C G, et al. The temperature field digitization of radiation images in blast furnace raceway[J]. ISIJ International, 2006, 46(10): 1410-1415. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[4] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[5] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[6] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[7] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[8] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[9] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[10] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[11] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[12] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[13] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[14] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[15] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||