CIESC Journal ›› 2024, Vol. 75 ›› Issue (2): 637-646.DOI: 10.11949/0438-1157.20230745
• Energy and environmental engineering • Previous Articles Next Articles
Hong CHEN1,2(), Kun JIANG2, Tingjiang TANG2, Yiyuan HUANG2, Bin CHI3(), Shijun LIAO1()
Received:
2023-07-17
Revised:
2024-01-18
Online:
2024-04-10
Published:
2024-02-25
Contact:
Bin CHI, Shijun LIAO
陈宏1,2(), 江坤2, 唐廷江2, 黄易元2, 池滨3(), 廖世军1()
通讯作者:
池滨,廖世军
作者简介:
陈宏(1980—),男,博士研究生,高级工程师,chenhong@vision-batt.com
基金资助:
CLC Number:
Hong CHEN, Kun JIANG, Tingjiang TANG, Yiyuan HUANG, Bin CHI, Shijun LIAO. Research on membrane electrode assembly consistency of high-power proton exchange membrane fuel cell stack[J]. CIESC Journal, 2024, 75(2): 637-646.
陈宏, 江坤, 唐廷江, 黄易元, 池滨, 廖世军. 大功率质子交换膜燃料电池电堆膜电极一致性研究[J]. 化工学报, 2024, 75(2): 637-646.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
额定功率 | 65 kW | 额定电流 | 540 A |
电堆质量 | 45 kg | 单电池数 | 210片 |
电堆长度 | 440 mm | 电堆宽度 | 419 mm |
电堆高度 | 124 mm | 活性面积 | 300 cm² |
Table 1 List of stack parameters
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
额定功率 | 65 kW | 额定电流 | 540 A |
电堆质量 | 45 kg | 单电池数 | 210片 |
电堆长度 | 440 mm | 电堆宽度 | 419 mm |
电堆高度 | 124 mm | 活性面积 | 300 cm² |
电流/A | 电压/V | 功率/kW | 平均单片 电压/V | 单片电压 波动率 |
---|---|---|---|---|
180 | 150 | 27 | 0.731 | 0.16 |
300 | 147 | 44 | 0.717 | 0.21 |
420 | 140 | 59 | 0.669 | 0.40 |
540 | 133 | 72 | 0.638 | 0.50 |
Table 2 Output performance of the stack at different power point
电流/A | 电压/V | 功率/kW | 平均单片 电压/V | 单片电压 波动率 |
---|---|---|---|---|
180 | 150 | 27 | 0.731 | 0.16 |
300 | 147 | 44 | 0.717 | 0.21 |
420 | 140 | 59 | 0.669 | 0.40 |
540 | 133 | 72 | 0.638 | 0.50 |
Fig.5 The influence of pressure on voltage consistency under different current and single cell voltage at anode/cathode gas pressure 120/100, 140/120 kPa
Fig.8 The influence of anode and cathode humidity on voltage consistency and influence of anode and cathode humidity on average voltage at different current
1 | 衣宝廉. 燃料电池——原理·技术·应用[M]. 北京: 化学工业出版社, 2003. |
Yi B L. Fuel Cells—Principles, Technologies and Applications[M]. Beijing: Chemical Industry Press, 2003. | |
2 | Xu Z, Yan Y, Wei W, et al. Supply system of cryo-compressed hydrogen for fuel cell stacks on heavy duty trucks[J]. International Journal of Hydrogen Energy, 2020, 45(23): 12921-12931. |
3 | Fan L X, Tu Z K, Chan S H. Recent development in design a state-of-art proton exchange membrane fuel cell from stack to system: theory, integration and prospective[J]. International Journal of Hydrogen Energy, 2023, 48(21): 7828-7865. |
4 | 高帷韬, 雷一杰, 张勋, 等. 质子交换膜燃料电池研究进展[J]. 化工进展, 2022, 41(3): 1539-1555. |
Gao W T, Lei Y J, Zhang X, et al. An overview of proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1539-1555. | |
5 | Jiao K, Xuan J, Du Q, et al. Designing the next generation of proton-exchange membrane fuel cells[J]. Nature, 2021, 595: 361-369. |
6 | 翁元明, 林瑞, 唐文超, 等. 燃料电池堆单片电压一致性研究进展[J]. 电源技术, 2015, 39(1): 199-202. |
Weng Y M, Lin R, Tang W C, et al. Development of individual cell voltage uniformity of fuel cell stack[J]. Chinese Journal of Power Sources, 2015, 39(1): 199-202. | |
7 | Manoharan Y, Hosseini S E, Butler B, et al. Hydrogen fuel cell vehicles; current status and future prospect[J]. Applied Sciences, 2019, 9(11): 2296. |
8 | 齐基. PEM燃料电池堆单片一致性的研究[D]. 武汉: 武汉理工大学, 2011. |
Qi J. Study on individual cell voltage uniformity of PEMFC stack[D].Wuhan: Wuhan University of Technology, 2011. | |
9 | Li Y K, Zhao X Q, Liu Z X, et al. Experimental study on the voltage uniformity for dynamic loading of a PEM fuel cell stack[J]. International Journal of Hydrogen Energy, 2015, 40(23): 7361-7369. |
10 | Verma A, Pitchumani R. Effects of operating parameters on the transient response of proton exchange membrane fuel cells subject to load changes[J]. International Journal of Hydrogen Energy, 2014, 39(33): 19024-19038. |
11 | Wei T, Chang G F, Dai H F, et al. Understanding the transient behavior and consistency evolution of PEMFC from the perspective of temperature[C]//SAE Technical Paper Series. Warrendale, PA, United States: SAE International, 2022. |
12 | Lin R, Zhu Y K, Ni M, et al. Consistency analysis of polymer electrolyte membrane fuel cell stack during cold start[J]. Applied Energy, 2019, 241: 420-432. |
13 | Zhu W H, Payne R U, Cahela D R, et al. Uniformity analysis at MEA and stack levels for a nexa PEM fuel cell system[J]. Journal of Power Sources, 2004, 128(2): 231-238. |
14 | 陈维荣, 刘嘉蔚, 郭爱, 等. 14.4 kW PEMFC电堆单体电压均衡性实验研究[J]. 西南交通大学学报, 2017, 52(3): 429-438. |
Chen W R, Liu J W, Guo A, et al. Experimental study on voltage uniformity of 14.4 kW PEMFC stack single cell[J]. Journal of Southwest Jiaotong University, 2017, 52(3): 429-438. | |
15 | 谭凯峰, 陈维荣, 韩明, 等. 空冷型PEMFC电堆的单电池特性研究[J]. 电化学, 2018, 24(6): 766-771. |
Tan K F, Chen W R, Han M, et al. Voltage distribution of self-humidifying air-cooled PEMFC[J]. Journal of Electrochemistry, 2018, 24(6): 766-771. | |
16 | Zhang X X, Jiang Y, Huang L, et al. Inconsistent responses of cells on operating conditions in a 5 kW proton exchange membrane fuel cell stack[J]. Electrochimica Acta, 2021, 391: 138925. |
17 | Chen D F, Pei P C, Li Y H, et al. Proton exchange membrane fuel cell stack consistency: evaluation methods, influencing factors, membrane electrode assembly parameters and improvement measures[J]. Energy Conversion and Management, 2022, 261: 115651. |
18 | Shen C J, Xu S C, Gao Y. Analysis of fuel cell stack performance attenuation and individual cell voltage uniformity based on the durability cycle condition[J]. Polymers, 2021, 13(8): 1199. |
19 | Chen H C, Shan W C, Liao H Y, et al. Online voltage consistency prediction of proton exchange membrane fuel cells using a machine learning method[J]. International Journal of Hydrogen Energy, 2021, 46(69): 34399-34412. |
20 | Corbo P, Migliardini F, Veneri O. Experimental analysis of a 20 kWe PEM fuel cell system in dynamic conditions representative of automotive applications[J]. Energy Conversion and Management, 2008, 49(10): 2688-2697. |
21 | Lin J W, Wu P, Dai H W, et al. Intelligent optimization of clamping design of PEM fuel cell stack for high consistency and uniformity of contact pressure[J]. International Journal of Green Energy, 2022, 19(1): 95-108. |
22 | Hu Z Y, Xu L F, Li J Q, et al. The uniformity and consistency analysis of a fuel cell stack with multipoint voltage-monitoring method[J]. Energy Procedia, 2019, 158: 2118-2125. |
23 | Pan G J, Bai Y P, Song H H, et al. Hydrogen fuel cell power system—development perspectives for hybrid topologies[J]. Energies, 2023, 16(6): 2680. |
24 | Qiu Y Q, Zeng T, Zhang C Z, et al. Progress and challenges in multi-stack fuel cell system for high power applications: architecture and energy management[J]. Green Energy and Intelligent Transportation, 2023, 2(2): 100068. |
25 | Barbir F. PEM Fuel Cells: Theory and Practice[M]. 2nd ed. London: Academic Press, 2013. |
26 | Baghban Yousefkhani M, Ghadamian H, Daneshvar K, et al. Investigation of the fuel utilization factor in PEM fuel cell considering the effect of relative humidity at the cathode[J]. Energies, 2020, 13(22): 6117. |
27 | Liu F, Xue X L, Zhang B B, et al. Improvement of air distribution consistency in large-scale proton exchange membrane fuel cell stack manifold[J]. Electrochemistry Communications, 2022, 144/145: 107396. |
28 | Rohendi D, Majlan E H, Mohamad A B, et al. Effects of temperature and backpressure on the performance degradation of MEA in PEMFC[J]. International Journal of Hydrogen Energy, 2015, 40(34): 10960-10968. |
29 | 侯健, 杨铮, 贺婷, 等. 质子交换膜燃料电池热管理问题的研究进展[J]. 中南大学学报(自然科学版), 2021, 52(1): 19-30. |
Hou J, Yang Z, He T, et al. Research progress on thermal management of proton exchange membrane fuel cells[J]. Journal of Central South University (Science and Technology), 2021, 52(1): 19-30. | |
30 | Chen Q, Zhang G B, Zhang X Z, et al. Thermal management of polymer electrolyte membrane fuel cells: a review of cooling methods, material properties, and durability[J]. Applied Energy, 2021, 286: 116496. |
31 | Pérez-Page M, Pérez-Herranz V. Effect of the operation and humidification temperatures on the performance of a PEM fuel cell stack[J]. ECS Transactions, 2009, 25(1): 733-745. |
32 | 杨子荣, 李岩, 冀雪峰, 等. 质子交换膜燃料电池运行工况参数敏感性分析[J]. 吉林大学学报(工学版), 2022, 52(9): 1971-1981. |
Yang Z R, Li Y, Ji X F, et al. Sensitivity analysis of operating parameters for proton exchange membrane fuel cells[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(9): 1971-1981. |
[1] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[2] | Jiawang YONG, Qianqian ZHAO, Nenglian FENG. Fault diagnosis of proton exchange membrane fuel cell based on nonlinear dynamic model [J]. CIESC Journal, 2022, 73(9): 3983-3993. |
[3] | PENG Yuejin, PENG Yun, LI Lun, LIU Zhixiang, CHEN Weirong. Shutdown process and shutdown strategy of PEMFC power system [J]. CIESC Journal, 2015, 66(3): 1178-1184. |
[4] | SHEN Jun, ZHOU Bing, QIU Zizhao, TU Zhengkai, LIU Zhichun, LIU Wei. Mass transfer enhancement of proton exchange membrane fuel cell [J]. CIESC Journal, 2014, 65(S1): 421-425. |
[5] | CAI Guangxu1,2,GUO Jianwei2,WANG Jia1. Application of electrochemical impedance spectroscopy to study of proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progree, 2014, 33(01): 56-63. |
[6] | DAI Liping,XIONG Junqiao,LIU Haiying. Research progress of effect of impurities on PEMFC performance [J]. Chemical Industry and Engineering Progree, 2013, 32(09): 2068-2076. |
[7] | LIU Jing1,WAN Zhongmin1,4,WAN Junhua1,DING Gangqiang2,TU Zhengkai3,LIU Wei4. Operation characteristic of proton exchange membrane fuel cell under medium-pressure [J]. CIESC Journal, 2012, 63(S1): 204-207. |
[8] | QU Shuguo,LI Jianlong. Research progress of ionic liquid polymer electrolyte used for high temperature proton exchange membrane fuel cells [J]. Chemical Industry and Engineering Progree, 2012, 31(12): 2660-2665. |
[9] | LI Weiwei1,SHANG Yuming2,WANG Shubo2,XIE Xiaofeng 2,LV Yafei1. Effect of polymer molecular weight of ABPBI on membrane electrode assembly of high temperature proton exchange membrane fuel cells [J]. CIESC Journal, 2011, 62(S2): 131-134. |
[10] | BAO Cheng, SU Qingquan, MI Wanliang, LI Zhiyuan, BI Quan, JI Zhonghua, LIU Zhixiang, MAO Zongqiang. A 10kW-scale Distributed Power Plant of Natural Gas-Proton Exchange Membrane Fuel Cell [J]. , 2010, 18(6): 988-994. |
[11] | YU Yi,PAN Mu. Research progress in system strategies of startup-shutdown for PEMFC [J]. , 2010, 29(10): 1857-. |
[12] | ZHONG Zhenzhong, CHEN Junxun, PENG Ronggui. Design and Performance Analysis of Micro Proton Exchange Membrane Fuel Cells [J]. , 2009, 17(2): 298-303. |
[13] | ZHONG Zhenzhong, CHEN Junxun, ZHUANG Pingji. Enhancement of Proton Exchange Membrane Fuel Cell Performance Using a Novel Tapered Gas Channel [J]. , 2009, 17(2): 286-297. |
[14] | WANG Yuxiao. Recent advances in the study of sodium borohydride hydrolysis for pure hydrogen supply to PEM fuel cell [J]. , 2009, 28(12): 2122-. |
[15] | LIAO Qiang,ZHU Xiaowei,ZHU Xun,YE Dingding,DING Yudong. Progress of visualization of proton exchange membrane fuel cell (PEMFC) [J]. , 2007, 26(9): 1213-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||