CIESC Journal ›› 2024, Vol. 75 ›› Issue (4): 1302-1316.DOI: 10.11949/0438-1157.20231117
• Reviews and monographs • Previous Articles Next Articles
Yuhang HE(), Dan XIE, Yangcheng LYU()
Received:
2023-10-30
Revised:
2023-12-27
Online:
2024-06-06
Published:
2024-04-25
Contact:
Yangcheng LYU
通讯作者:
吕阳成
作者简介:
何宇航(1996—),男,博士研究生,heyh19@mails.tsinghua.edu.cn
基金资助:
CLC Number:
Yuhang HE, Dan XIE, Yangcheng LYU. Research progress of cationic polymerization in microreactor[J]. CIESC Journal, 2024, 75(4): 1302-1316.
何宇航, 谢丹, 吕阳成. 微反应器内阳离子聚合研究进展[J]. 化工学报, 2024, 75(4): 1302-1316.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 (a) Schematic diagram of flow synthesis setup (M1, M2 and M3 are tees for micromixers; C1 and C2 are curved tubes for achieving the pre-set temperature; R1 is the microtube reactor); (b) Effect of the reaction system composition on DP[F(IB+IP) + F(CH2Cl2) = 8 ml/min, F(initiator) = 8 ml/min][57]
Fig.6 (a) Schematic of various preparation methods of initiation solution; (b) Proposed mechanism of cationic polymerization of IB utilizing dual ethers[74]
Fig.8 (a) Microsystem for polymerization(M1, M2—micromixers; R1—microtube reactor)[38]; (b) Plots of molecular weight (Mn) against monomer/initiator ratio in cationic polymerization of NBVE initiated by an N-acyliminium ion pool using a microflow system[39]
Fig.11 (a) Binding energies and optimized structure of FeCl3·Nu calculated by Gaussian 09w[B3LYP/6-311G(++,d,p)]; (b) Proposed mechanisms of living cationic polymerization of IBVE under dual and single nucleophiles conditions[88]
Fig.12 Schematic diagram of the microflow system based on the T-shaped micromixer for block copolymerization [M1 and M2: T-shape micromixer (250 mm). R1 and R2: microtube reactor (R1: Φ=500 μm, length=50 cm; R2: Φ=500 μm, length=50 cm)][39]
Fig.13 Temperature dependence of the transmittance at 500 nm of a 1.0%(mass) aqueous solution of poly(IBVE x -co-HBVE1-x )200 (DP n about 200): (a) prepared in a microflow system(Mw/Mn = 1.10); (b) prepared in a batch reactor(Mw/Mn = 1.41—1.57)[74]
Fig.14 (a) The radius variation of the poly(IBVE5-co-HBVE195) in 1.0%(mass) aqueous solutions; (b) Relationships between Tps in water and the composition of copolymers (IBVE x -co-HBVE1-x )200 (DP n about 200, Mw/Mn = 1.10)[74]
Fig.15 Plot of tdecay as a function of tact (a) and plots of lntact or lntdecay as a function of the dissociation energy (b) in the IBVE polymerization reactions initiated by the SnCl4/X (X = EA, DO, EP, Et2O or DOL) system[78]
1 | 何宇航, 刘晴捷, 吕阳成. 微反应器内丁基橡胶溶液法制备体系的反应特性研究[J]. 化工学报, 2021, 72(2): 1001-1008. |
He Y H, Liu Q J, Lyu Y C. Study on reaction characteristics of solution polymerization system for butyl rubber preparation in microreactor[J]. CIESC Journal, 2021, 72(2): 1001-1008. | |
2 | Mcdonald M F, Shaffer T D, Tsou A H. Commercial Isobutylene Polymers[M]. US: John Wiley & Sons, Inc., 2016. |
3 | Chen J F, Gao H, Zou H K, et al. Cationic polymerization in rotating packed bed reactor: experimental and modeling[J]. AIChE Journal, 2010, 56(4): 1053-1062. |
4 | Gronowski A A. Synthesis of butyl rubber in hexane using a mixture of Et2AlCl and EtAlCl2 in the initiating system[J]. Journal of Applied Polymer Science, 2003, 87(14): 2360-2364. |
5 | Huang Q, He P, Wang J, et al. Synthesis of high molecular weight polyisobutylene via cationic polymerization at elevated temperatures[J]. Chinese Journal of Polymer Science, 2013, 31(8): 1139-1147. |
6 | Prez F E D, Goethals E J, Hoogenboom R. Cationic Polymerizations[M]. US: John Wiley & Sons, Ltd., 2013. |
7 | Puskas J E, Kaszas G. Living carbocationic polymerization of resonance-stabilized monomers[J]. Progress in Polymer Science, 2000, 25(3): 403-452. |
8 | Aoshima S, Yoshida T, Kanazawa A, et al. New stage in living cationic polymerization: an array of effective Lewis acid catalysts and fast living polymerization in seconds[J]. Journal of Polymer Science A Polymer Chemistry, 2007, 45(10): 1801-1813. |
9 | Dimitrov P, Emert J, Hua J, et al. Mechanism of isomerization in the cationic polymerization of isobutylene[J]. Macromolecules, 2011, 44(7): 1831-1840. |
10 | Szwarc M. ‘Living’ polymers[J]. Nature, 1956, 178: 1168-1169. |
11 | Bae Y C, Fodor Z, Faust R. Living coupling reaction in living cationic polymerization(1): Coupling reaction of living polyisobutylene[J]. Macromolecules, 1997, 30(2): 198-203. |
12 | Faust R, Kennedy J P. Living carbocationic polymerization[J]. Polymer Bulletin, 1986, 15(4): 317-323. |
13 | Faust R, Kennedy J P. Living carbocationic polymerization(Ⅳ): Living polymerization of isobutylene[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1987, 25(7): 1847-1869. |
14 | Gyor M, Wang H C, Faust R. Living carbocationic polymerization of isobutylene with blocked bifunctional initiators in the presence of di-tert-butylpyridine as a proton trap[J]. Journal of Macromolecular Science, Part A, 1992, 29(8): 639-653. |
15 | Yonezumi M, Takano N, Kanaoka S, et al. Living cationic polymerization of vinyl ethers in the presence of a strong base: poisonous or helpful?[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46(20): 6746-6753. |
16 | Miyamoto M, Sawamoto M, Higashimura T. Synthesis of monodisperse living poly(vinyl ethers) and block copolymers by the hydrogen iodide/iodine initiating system[J]. Macromolecules, 1984, 17(11): 2228-2230. |
17 | Aoshima S, Higashimura T. Living cationic polymerization of vinyl monomers by organoaluminium halides[J]. Polymer Bulletin, 1986, 15(5): 417-423. |
18 | Aoshima S, Higashimura T. Living cationic polymerization of vinyl monomers by organoaluminum halides(3): Living polymerization of isobutyl vinyl ether by ethyldichloroaluminum in the presence of ester additives[J]. Macromolecules, 1989, 22(3): 1009-1013. |
19 | Kishimoto Y, Aoshima S, Higashimura T. Living cationic polymerization of vinyl monomers by organoaluminum halides(4): Polymerization of isobutyl vinyl ether by ethylaluminum dichloride (EtAlCl2) in the presence of ether additives[J]. Macromolecules, 1989, 22(10): 3877-3882. |
20 | Cho C G, Feit B A, Webster O W. Cationic polymerization of isobutyl vinyl ether: livingness enhancement by dialkyl sulfides[J]. Macromolecules, 1990, 23(7): 1918-1923. |
21 | Matyjaszewski K, Lin C H. Cationic polymerization of styrenes by activated covalent species. Direct 1H-NMR observation of complexes of 1-phenylethyl acetates with Lewis acids[J]. Journal of Polymer Science A Polymer Chemistry, 1991, 29(10): 1439-1446. |
22 | Kamigaito M, Maeda Y, Sawamoto M, et al. Living cationic polymerization of isobutyl vinyl ether by hydrogen chloride/Lewis acid initiating systems in the presence of salts: in situ direct NMR analysis of the growing species[J]. Macromolecules, 1993, 26(7): 1643-1649. |
23 | Higashimura T, Ishihama Y, Sawamoto M. Living cationic polymerization of styrene: new initiating systems based on added halide salts and the nature of the growing species[J]. Macromolecules, 1993, 26(4): 744-751. |
24 | Kanazawa A, Hirabaru Y, Kanaoka S, et al. Fast living cationic polymerization of vinyl ethers with iron(Ⅲ) chloride in the presence of a cyclic ether: most active and environmentally benign catalyst for the living cationic polymerization of vinyl ethers[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44(19): 5795-5800. |
25 | Yoshida T, Tsujino T, Kanaoka S, et al. Fast living cationic polymerization accelerated by SnCl4(Ⅰ): New base-stabilized living system for various vinyl ethers with SnCl4/EtAlCl2 [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43(2): 468-472. |
26 | Yoshida T, Kanazawa A, Kanaoka S, et al. Instant living cationic polymerization using SnCl4/EtAlCl2 with a weak Lewis base: ultrafast polymerization in seconds[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43(18): 4288-4291. |
27 | Shinke Y, Kanazawa A, Kanaoka S, et al. Living cationic polymerization of vinyl ethers with a naphthyl group: decisive effect of the substituted position on naphthalene ring[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2012, 50(24): 5041-5048. |
28 | Shibata T, Kanaoka S, Aoshima S. Quantitative synthesis of star-shaped poly(vinyl ether)s with a narrow molecular weight distribution by living cationic polymerization[J]. Journal of the American Chemical Society, 2006, 128(23): 7497-7504. |
29 | Kanazawa A, Kanaoka S, Aoshima S. Major progress in catalysts for living cationic polymerization of isobutyl vinyl ether: effectiveness of a variety of conventional metal halides[J]. Macromolecules, 2009, 42(12): 3965-3972. |
30 | Aoshima S, Kanaoka S. A renaissance in living cationic polymerization[J]. Chemical Reviews, 2009, 109(11): 5245-5287. |
31 | Iwasaki T, Nagaki A, Yoshida J I. Microsystem controlled cationic polymerization of vinyl ethers initiated by CF3SO3H[J]. Chemical Communications, 2007(12): 1263-1265. |
32 | Cui Y J, Song J, Du C C, et al. Determination of the kinetics of chlorobenzene nitration using a homogeneously continuous microflow[J]. AIChE Journal, 2022, 68(4): e17564. |
33 | Song J, Cui Y J, Luo G S, et al. Kinetic study of o-nitrotoluene nitration in a homogeneously continuous microflow[J]. Reaction Chemistry & Engineering, 2022, 7(1): 111-122. |
34 | Song J, Cui Y J, Sheng L, et al. Determination of nitration kinetics of p-nitrotoluene with a homogeneously continuous microflow[J]. Chemical Engineering Science, 2022, 247: 117041. |
35 | Duan X N, Tu J C, Teixeira A R, et al. An automated flow platform for accurate determination of gas-liquid-solid reaction kinetics[J]. Reaction Chemistry & Engineering, 2020, 5(9): 1751-1758. |
36 | Duan X N, Wang X P, Chen X K, et al. Continuous and selective hydrogenation of heterocyclic nitroaromatics in a micropacked bed reactor[J]. Organic Process Research & Development, 2021, 25(9): 2100-2109. |
37 | Lan Z, Lu Y C. Enhancing the amination reaction of 4-nitrochlorobenzene in a tubular reactor[J]. Chemical Engineering and Processing - Process Intensification, 2021, 169: 108636. |
38 | Nagaki A, Kawamura K, Suga S, et al. Cation pool-initiated controlled/living polymerization using microsystems[J]. Journal of the American Chemical Society, 2004, 126(45): 14702-14703. |
39 | Nagaki A, Iwasaki T, Kawamura K, et al. Microflow system controlled carbocationic polymerization of vinyl ethers[J]. Chemistry-An Asian Journal, 2008, 3(8/9): 1558-1567. |
40 | Xie D, Lu Y C. Achieving low-cost and accelerated living cationic polymerization of isobutyl vinyl ether in microflow system[J]. Industrial & Engineering Chemistry Research, 2018, 57(22): 7441-7449. |
41 | Wong S, Ward M, Wharton C. Micro T-mixer as a rapid mixing micromixer[J]. Sensors and Actuators B: Chemical, 2004, 100(3): 359-379. |
42 | Bothe D, Stemich C, Warnecke H J. Fluid mixing in a T-shaped micro-mixer[J]. Chemical Engineering Science, 2006, 61(9): 2950-2958. |
43 | Matsunaga T, Lee H J, Nishino K. An approach for accurate simulation of liquid mixing in a T-shaped micromixer[J]. Lab on a Chip, 2013, 13(8): 1515-1521. |
44 | Galletti C, Roudgar M, Brunazzi E, et al. Effect of inlet conditions on the engulfment pattern in a T-shaped micro-mixer[J]. Chemical Engineering Journal, 2012, 185/186: 300-313. |
45 | Fani A, Camarri S, Salvetti M V. Investigation of the steady engulfment regime in a three-dimensional T-mixer[J]. Physics of Fluids, 2013, 25(6): 064102. |
46 | Sultan M A, Krupa K, Fonte C P, et al. High-throughput T-jets mixers: an innovative scale-up concept[J]. Chemical Engineering & Technology, 2013, 36(2): 323-331. |
47 | 赵玉潮, 应盈, 陈光文, 等. T形微混合器内的混合特性[J]. 化工学报, 2006, 57(8): 1884-1890. |
Zhao Y C, Ying Y, Chen G W, et al. Characterization of micro-mixing in T-shaped micro-mixer[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(8): 1884-1890. | |
48 | Chen M, Johnson J A. Improving photo-controlled living radical polymerization from trithiocarbonates through the use of continuous-flow techniques[J]. Chemical Communications, 2015, 51(31): 6742-6745. |
49 | Corrigan N, Almasri A, Taillades W, et al. Controlling molecular weight distributions through photoinduced flow polymerization[J]. Macromolecules, 2017, 50(21): 8438-8448. |
50 | Qiu L, Wang K, Zhu S, et al. Kinetics study of acrylic acid polymerization with a microreactor platform[J]. Chemical Engineering Journal, 2016, 284: 233-239. |
51 | Xie P, Wang K, Wang P J, et al. Synthesizing bromobutyl rubber by a microreactor system[J]. AIChE Journal, 2017, 63(3): 1002-1009. |
52 | Nagaki A, Tomida Y, Yoshida J I. Microflow-system-controlled anionic polymerization of styrenes[J]. Macromolecules, 2008, 41(17): 6322-6330. |
53 | Iwasaki T, Yoshida J I. Free radical polymerization in microreactors. Significant improvement in molecular weight distribution control[J]. Macromolecules, 2005, 38(4): 1159-1163. |
54 | Li J J, Chen M, Lin X, et al. Controlled microflow cationic polymerization of vinyl ethers under ambient conditions[J]. Chemical Engineering Journal, 2022, 435: 134828. |
55 | Toyoda T, Ohishi T, Yamanaka Y, et al. Process intensification of living cationic polymerization of isobutylene by a flow reaction system[J]. Chemical Engineering & Technology, 2019, 42(12): 2666-2672. |
56 | Flory P J. Effects of molecular structure on physical properties of butyl rubber[J]. Industrial & Engineering Chemistry, 1946, 38(4): 417-436. |
57 | Lu Y C, Zhu S, Wang K, et al. Generation of poly(isobutene-co-isoprene) in a microflow device[J]. Industrial & Engineering Chemistry Research, 2016, 55(5): 1215-1220. |
58 | Zhu S, Lu Y C, Wang K, et al. Flow synthesis of medium molecular weight polyisobutylene coinitiated by AlCl3 [J]. European Polymer Journal, 2016, 80: 219-226. |
59 | Mach H, Rath P. Highly reactive polyisobutene as a component of a new generation of lubricant and fuel additives[J]. Lubrication Science, 1999, 11(2): 175-185. |
60 | Harrison J J, Mijares C M, Cheng M T, et al. Negative ion electrospray ionization mass spectrum of polyisobutenylsuccinic anhydride: implications for isobutylene polymerization mechanism[J]. Macromolecules, 2002, 35(7): 2494-2500. |
61 | Zhu S, Lu Y C, Wang K, et al. Fast flow synthesis of highly reactive polyisobutylene co-initiated by an AlCl3/isopropyl ether complex[J]. RSC Advances, 2016, 6(12): 9827-9834. |
62 | Bergbreiter D E, Su H L, Koizumi H, et al. Polyisobutylene-supported N-heterocyclic carbene palladium catalysts[J]. Journal of Organometallic Chemistry, 2011, 696(6): 1272-1279. |
63 | Li Y, Wu Y X, Xu X, et al. Electron-pair-donor reaction order in the cationic polymerization of isobutylene coinitiated by AlCl3 [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2007, 45(14): 3053-3061. |
64 | Li Y, Wu Y X, Liang L H, et al. Cationic polymerization of isobutylene coinitiated by AlCl3 in the presence of ethyl benzoate[J]. Chinese Journal of Polymer Science, 2010, 28(1): 55-62. |
65 | Zhu S, Lu Y C, Wang K, et al. Cationic polymerization of isobutylene catalysed by AlCl3 with multiple nucleophilic reagents[J]. RSC Advances, 2016, 6(100): 97983-97989. |
66 | Vasilenko I V, Frolov A N, Kostjuk S V. Cationic polymerization of isobutylene using AlCl3OBu2 as a coinitiator: synthesis of highly reactive polyisobutylene[J]. Macromolecules, 2010, 43(13): 5503-5507. |
67 | Liu Q, Wu Y X, Zhang Y, et al. A cost-effective process for highly reactive polyisobutylenes via cationic polymerization coinitiated by AlCl3 [J]. Polymer, 2010, 51(25): 5960-5969. |
68 | Vasilenko I V, Shiman D I, Kostjuk S V. Highly reactive polyisobutylenes via AlCl3OBu2-coinitiated cationic polymerization of isobutylene: effect of solvent polarity, temperature, and initiator[J]. Journal of Polymer Science. Part A: Polymer Chemistry, 2012, 50(4): 750-758. |
69 | Zhang L B, Wu Y X, Zhou P, et al. Synthesis of highly reactive polyisobutylene by selective polymerization with o-cresol/AlCl3 initiating system[J]. Polymers for Advanced Technologies, 2012, 23(3): 522-528. |
70 | Shiman D I, Vasilenko I V, Kostjuk S V. Cationic polymerization of isobutylene by AlCl3/ether complexes in non-polar solvents: effect of ether structure on the selectivity of β-H elimination[J]. Polymer, 2013, 54(9): 2235-2242. |
71 | Kostjuk S V, Yeong H Y, Voit B. Cationic polymerization of isobutylene at room temperature[J]. Journal of Polymer Science. Part A: Polymer Chemistry, 2013, 51(3): 471-486. |
72 | Kostjuk S V, Vasilenko I V, Shiman D I, et al. Highly reactive polyisobutylenes via cationic polymerization of isobutylene by AlCl3/ether complexes in non-polar media: scope and limitations[J]. Macromolecular Symposia, 2015, 349(1): 94-103. |
73 | Zhu S, Wang K, Lu Y C. Effects of ether on the cationic polymerization of isobutylene catalyzed by AlCl3 [J]. ACS Omega, 2018, 3(2): 2033-2039. |
74 | Xie D, Zhu S, Lu Y C. Tailoring the AlCl3/iPr2O/Et2O initiation system for highly reactive polyisobutylene synthesis in pure n-hexane[J]. RSC Advances, 2020, 10(9): 5183-5190. |
75 | Liu Q, Wu Y X, Yan P F, et al. Polyisobutylene with high exo-olefin content via β-H elimination in the cationic polymerization of isobutylene with H2O/FeCl3/dialkyl ether initiating system[J]. Macromolecules, 2011, 44(7): 1866-1875. |
76 | Kumar R, Dimitrov P, Bartelson K J, et al. Polymerization of isobutylene by GaCl3 or FeCl3/ether complexes in nonpolar solvents[J]. Macromolecules, 2012, 45(21): 8598-8603. |
77 | Bartelson K J, De P, Kumar R, et al. Cationic polymerization of isobutylene by FeCl3/ether complexes in hexanes: aninvestigation of the steric and electronic effects of ethers[J]. Polymer, 2013, 54(18): 4858-4863. |
78 | Xie D, Lu Y C. Understanding the effects of nucleophiles in fast living cationic polymerisation of isobutyl vinyl ether in a microflow system from stability and activity of propagating chains[J]. Polymer Chemistry, 2021, 12(17): 2542-2550. |
79 | Zhu Y L, Storey R F. Synthesis of polyisobutylene-based miktoarm star polymers from a dicationic monoradical dual initiator[J]. Macromolecules, 2012, 45(13): 5347-5357. |
80 | Xie Y, Chang J J, Wu Y B, et al. Synthesis and properties of bromide-functionalized poly(isobutylene-co-p-methylstyrene) random copolymer[J]. Polymer International, 2017, 66(3): 468-476. |
81 | Faust R, Kennedy J P. Living carbocationic polymerization(Ⅲ): Demonstration of the living polymerization of isobutylene[J]. Polymer Bulletin, 1986, 15(4): 317-323. |
82 | Kaszas G, Puskas J E, Kennedy J P, et al. Electron-pair donors in carbocationic polymerization(Ⅲ): Carbocation stabilization by external electron-pair donors in isobutylene polymerization[J]. Journal of Macromolecular Science. Part A: Chemistry, 1989, 26(8): 1099-1114. |
83 | Rajabalitabar B, Nguyen H A, Cheradame H. Synthesis of polymers containing pseudohalide groups by cationic polymerization(14): Functionalizing “living” polymerization of 2-methylpropene initiated by the system 1,4-bis(1-azido-1-methylethyl)benzene/diethylaluminum chloride[J]. Macromolecules, 1996, 29(2): 514-518. |
84 | Murachev V B, Nesmelov A I, Byrikhin V S, et al. Effect of the composition of the initiating complex acyl halides/aluminium bromide on the cationic polymerization of isobutylene[J]. Polymer International, 2000, 49(6): 501-508. |
85 | He Y H, Lu Y C. Living cationic polymerization of isobutylene in seconds based on microflow system[J]. European Polymer Journal, 2022, 174: 111335. |
86 | Sheng L, Ma L, Chen Y C, et al. A comprehensive study of droplet formation in a capillary embedded step T-junction: from squeezing to jetting[J]. Chemical Engineering Journal, 2022, 427: 132067. |
87 | Iwasaki T, Yoshida J I. CF3SO3H initiated cationic polymerization of diisopropenylbenzenes in macrobatch and microflow systems[J]. Macromolecular Rapid Communications, 2007, 28(11): 1219-1224. |
88 | Xie D, Lu Y C. Precise synthesis of poly(IBVE-co-HBVE) with tunable thermo-response via fast flow polymerization[J]. Polymer, 2020, 190: 122223. |
89 | Yoshida J I, Suga S. Basic concepts of “cation pool” and “cation flow” methods and their applications in conventional and combinatorial organic synthesis[J]. Chemistry - A European Journal, 2002, 8(12): 2650. |
90 | Bally F, Serra C A, Hessel V, et al. Micromixer-assisted polymerization processes[J]. Chemical Engineering Science, 2011, 66(7): 1449-1462. |
91 | Aoshima S, Oda H, Kobayashi E. Synthesis of thermally-induced phase separating polymer with well-defined polymer structure by living cationic polymerization(Ⅰ): Synthesis of poly(vinyl ether)s with oxyethylene units in the pendant and its phase separation behavior in aqueous solution[J]. Journal of Polymer Science. Part A: Polymer Chemistry, 1992, 30(11): 2407-2413. |
92 | Sugihara S, Hashimoto K, Matsumoto Y, et al. Thermosensitive polyalcohols: synthesis via living cationic polymerization of vinyl ethers with a silyloxy group[J]. Journal of Polymer Science. Part A: Polymer Chemistry, 2003, 41(21): 3300-3312. |
93 | Sugihara S, Kanaoka S, Aoshima S. Thermosensitive random copolymers of hydrophilic and hydrophobic monomers obtained by living cationic copolymerization[J]. Macromolecules, 2004, 37(5): 1711-1719. |
94 | Tonhauserc, Natalello A, weH Lö, et al. Microflow technology in polymer synthesis[J]. Macromolecules, 2012, 45(24): 9551-9570. |
95 | He Y H, Xie D, Lu Y C. Living copolymerization of EOVE and MOVE: fast flow synthesis and thermal responsive behavior[J]. Chinese Journal of Polymer Science, 2022, 40(10): 1193-1200. |
96 | He Y H, Zhang Z E, Ke H, et al. Microflow system for controlled synthesis of ethylene-vinyl acetate copolymers: continuous copolymerization and kinetic study[J]. Chemical Engineering Journal, 2023, 470: 143940. |
97 | Shen Y Q, Zhu S P, Pelton R. Packed column reactor for continuous atom transfer radical polymerization: methyl methacrylate polymerization using silica gel supported catalyst[J]. Macromolecular Rapid Communications, 2000, 21(14): 956-959. |
98 | Xue F, Deng H P, Xue C W, et al. Reaction discovery using acetylene gas as the chemical feedstock accelerated by the “stop-flow” micro-tubing reactor system[J]. Chemical Science, 2017, 8(5): 3623-3627. |
99 | Huo F L, Lu Y C. Homogeneous synthesis of hydroxyethyl acrylate catalyzed by organochromium(Ⅲ) complexes: kinetics and ligand effect[J]. Chemical Engineering Journal, 2022, 440: 135804. |
100 | Tian J X, Tang T Y, Deng J, et al. An integrated system of a microreactor with a Taylor-Couette reactor for 2,2′- dibenzothiazole disulfide synthesis[J]. AIChE Journal, 2023, 69(4): e17924. |
[1] | Xiao XUE, Minjing SHANG, Yuanhai SU. Advances on continuous-flow synthesis of drugs in microreactors [J]. CIESC Journal, 2024, 75(4): 1439-1454. |
[2] | Rao CHEN, Xin ZHAO, Daixin CHEN, Shengkun JIANG, Yingjiang LIAN, Jinbo WANG, Mei YANG, Guangwen CHEN. Continuous dinitration of toluene to dinitrotoluene in a microreactor [J]. CIESC Journal, 2024, 75(3): 867-876. |
[3] | Ting WANG, Zhongdong WANG, Xingyu XIANG, Chengxiang HE, Chunying ZHU, Youguang MA, Taotao FU. Advances in synthesis of cyclic ester additives for lithium batteries in microreactors [J]. CIESC Journal, 2024, 75(1): 95-109. |
[4] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[5] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[6] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[7] | Zhongqiu ZHANG, Hongguang LI, Yilin SHI. A multi-task learning approach for complex chemical processes based on manual predictive manipulating strategies [J]. CIESC Journal, 2023, 74(3): 1195-1204. |
[8] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[9] | Chenghao ZHANG, Jing LUO, Jisong ZHANG. Advances in continuous aerobic oxidation based on nitroxyl radical catalyst in microreactors [J]. CIESC Journal, 2023, 74(2): 511-524. |
[10] | Yu XIE, Min ZHANG, Weiguo HU, Yujun WANG, Guangsheng LUO. Study on efficient dissolution of D-7-ACA using membrane dispersion microreactor [J]. CIESC Journal, 2023, 74(2): 748-755. |
[11] | Jiawei FU, Shuaishuai CHEN, Kailun FANG, Xin JIANG. Advantage of microreactor on the synthesis of high-activity Cu-Mn catalyst by co-precipitation [J]. CIESC Journal, 2023, 74(2): 776-783. |
[12] | Weiyi SU, Jiahui DING, Chunli LI, Honghai WANG, Yanjun JIANG. Research progress of enzymatic reactive crystallization [J]. CIESC Journal, 2023, 74(2): 617-629. |
[13] | Xingyu YANG, You MA, Chunying ZHU, Taotao FU, Youguang MA. Study on liquid-liquid distribution in comb parallel microchannels [J]. CIESC Journal, 2023, 74(2): 698-706. |
[14] | Xiangyu LI, Lin SUI, Junxia MA, Weili XIONG. ONLSTM soft sensor modeling based on time series transfer and dual stream weighting [J]. CIESC Journal, 2023, 74(11): 4622-4633. |
[15] | Chenya LI, Jie LIU, Jianzhi WANG, Yanping LIU, Xiao LIN, Faquan YU. Preparation of caprolactam by Beckmann rearrangement in spiral microchannel reactor [J]. CIESC Journal, 2023, 74(10): 4182-4190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||