CIESC Journal ›› 2025, Vol. 76 ›› Issue (11): 5788-5798.DOI: 10.11949/0438-1157.20250326
• Special Column: Multiphase Flow and Heat Transfer in Energy Utilization Processes • Previous Articles
Received:2025-03-31
Revised:2025-04-30
Online:2025-12-19
Published:2025-11-25
Contact:
Hui JIN
通讯作者:
金辉
作者简介:王俊英(2000—),女,博士研究生,1982531019@qq.com
基金资助:CLC Number:
Junying WANG, Hui JIN. Molecular dynamics investigation on the solubility parameters of supercritical CO2 and petroleum hydrocarbon[J]. CIESC Journal, 2025, 76(11): 5788-5798.
王俊英, 金辉. 超临界CO2与石油烃溶解度参数的分子动力学研究[J]. 化工学报, 2025, 76(11): 5788-5798.
Add to citation manager EndNote|Ris|BibTeX
| 类型 | 名称 | 分子式 | 摩尔质量/(g/mol) |
|---|---|---|---|
| 烷烃 | 正己烷 | C6H14 | 86.178 |
| 正癸烷 | C10H22 | 142.286 | |
| 正二十烷 | C20H42 | 282.556 | |
| 环烷烃 | 环己烷 | C6H12 | 84.162 |
| 十氢萘 | C10H18 | 138.254 | |
| 芳香烃 | 苯 | C6H6 | 78.114 |
| 萘 | C10H8 | 128.174 | |
| 苯并芘 | C20H12 | 252.316 | |
| 树脂/沥青质 | C26H32S | 376.602 |
Table 1 Organic small molecule model of petroleum hydrocarbons
| 类型 | 名称 | 分子式 | 摩尔质量/(g/mol) |
|---|---|---|---|
| 烷烃 | 正己烷 | C6H14 | 86.178 |
| 正癸烷 | C10H22 | 142.286 | |
| 正二十烷 | C20H42 | 282.556 | |
| 环烷烃 | 环己烷 | C6H12 | 84.162 |
| 十氢萘 | C10H18 | 138.254 | |
| 芳香烃 | 苯 | C6H6 | 78.114 |
| 萘 | C10H8 | 128.174 | |
| 苯并芘 | C20H12 | 252.316 | |
| 树脂/沥青质 | C26H32S | 376.602 |
| 压力/MPa | δ实验/MPa1/2 | δ模拟/MPa1/2 | 相对误差/% |
|---|---|---|---|
| 8.5 | 4.9 | 4.997 | 1.983 |
| 10 | 7.7 | 8.148 | 5.819 |
| 20 | 14.3 | 14.189 | 0.777 |
| 25 | 15 | 14.619 | 2.537 |
| 30 | 15.6 | 15.143 | 2.931 |
| 40 | 16.4 | 15.802 | 3.645 |
Table 2 Comparison results of the solubility parameter of supercritical CO2 with experimental values under different pressure at 318 K
| 压力/MPa | δ实验/MPa1/2 | δ模拟/MPa1/2 | 相对误差/% |
|---|---|---|---|
| 8.5 | 4.9 | 4.997 | 1.983 |
| 10 | 7.7 | 8.148 | 5.819 |
| 20 | 14.3 | 14.189 | 0.777 |
| 25 | 15 | 14.619 | 2.537 |
| 30 | 15.6 | 15.143 | 2.931 |
| 40 | 16.4 | 15.802 | 3.645 |
| 甲醇摩尔分数 | δ实验/MPa1/2 | δ模拟/MPa1/2 | 相对误差/% |
|---|---|---|---|
| 0 | 14.5 | 14.242 | 1.782 |
| 0.1 | 15.8 | 15.481 | 2.021 |
| 0.2 | 17.4 | 16.955 | 2.557 |
| 0.3 | 18.9 | 18.526 | 1.979 |
Table 3 Comparison results of the solubility parameter of the supercritical CO2-methanol mixed system with experimental values at 318 K, 70 MPa
| 甲醇摩尔分数 | δ实验/MPa1/2 | δ模拟/MPa1/2 | 相对误差/% |
|---|---|---|---|
| 0 | 14.5 | 14.242 | 1.782 |
| 0.1 | 15.8 | 15.481 | 2.021 |
| 0.2 | 17.4 | 16.955 | 2.557 |
| 0.3 | 18.9 | 18.526 | 1.979 |
| 温度/K | 压力/MPa | 总能/(J/m3) | 范德华能/(J/m3) | 静电能/(J/m3) | 其他/(J/m3) |
|---|---|---|---|---|---|
| 313 | 10 | 1.34×108 | 7.68×107 | 5.45×107 | 2.92×106 |
| 15 | 1.63×108 | 9.28×107 | 6.65×107 | 3.57×106 | |
| 20 | 1.82×108 | 1.03×108 | 7.47×107 | 3.99×106 | |
| 25 | 1.96×108 | 1.11×108 | 8.10×107 | 4.32×106 | |
| 30 | 2.07×108 | 1.16×108 | 8.63×107 | 4.57×106 | |
| 333 | 10 | 2.44×107 | 1.43×107 | 9.56×106 | 5.00×105 |
| 15 | 1.11×108 | 6.43×107 | 4.38×107 | 2.44×106 | |
| 20 | 1.37×108 | 7.90×107 | 5.48×107 | 3.05×106 | |
| 25 | 1.60×108 | 9.19×107 | 6.45×107 | 3.58×106 | |
| 30 | 1.73×108 | 9.90×107 | 7.03×107 | 3.89×106 | |
| 353 | 10 | 1.30×107 | 7.75×106 | 4.98×106 | 2.67×105 |
| 15 | 5.18×107 | 3.07×107 | 1.99×107 | 1.13×106 | |
| 20 | 9.73×107 | 5.73×107 | 3.78×107 | 2.20×106 | |
| 25 | 1.20×108 | 7.03×107 | 4.70×107 | 2.73×106 | |
| 30 | 1.39×108 | 8.08×107 | 5.48×107 | 3.18×106 | |
| 373 | 10 | 9.11×106 | 5.50×106 | 3.42×106 | 1.92×105 |
| 15 | 2.88×107 | 1.73×107 | 1.09×107 | 6.37×105 | |
| 20 | 6.18×107 | 3.69×107 | 2.34×107 | 1.41×106 | |
| 25 | 8.84×107 | 5.26×107 | 3.37×107 | 2.04×106 | |
| 30 | 1.10×108 | 6.54×107 | 4.24×107 | 2.57×106 |
Table 4 The cohesive energy density of supercritical CO2 at different temperature and pressure
| 温度/K | 压力/MPa | 总能/(J/m3) | 范德华能/(J/m3) | 静电能/(J/m3) | 其他/(J/m3) |
|---|---|---|---|---|---|
| 313 | 10 | 1.34×108 | 7.68×107 | 5.45×107 | 2.92×106 |
| 15 | 1.63×108 | 9.28×107 | 6.65×107 | 3.57×106 | |
| 20 | 1.82×108 | 1.03×108 | 7.47×107 | 3.99×106 | |
| 25 | 1.96×108 | 1.11×108 | 8.10×107 | 4.32×106 | |
| 30 | 2.07×108 | 1.16×108 | 8.63×107 | 4.57×106 | |
| 333 | 10 | 2.44×107 | 1.43×107 | 9.56×106 | 5.00×105 |
| 15 | 1.11×108 | 6.43×107 | 4.38×107 | 2.44×106 | |
| 20 | 1.37×108 | 7.90×107 | 5.48×107 | 3.05×106 | |
| 25 | 1.60×108 | 9.19×107 | 6.45×107 | 3.58×106 | |
| 30 | 1.73×108 | 9.90×107 | 7.03×107 | 3.89×106 | |
| 353 | 10 | 1.30×107 | 7.75×106 | 4.98×106 | 2.67×105 |
| 15 | 5.18×107 | 3.07×107 | 1.99×107 | 1.13×106 | |
| 20 | 9.73×107 | 5.73×107 | 3.78×107 | 2.20×106 | |
| 25 | 1.20×108 | 7.03×107 | 4.70×107 | 2.73×106 | |
| 30 | 1.39×108 | 8.08×107 | 5.48×107 | 3.18×106 | |
| 373 | 10 | 9.11×106 | 5.50×106 | 3.42×106 | 1.92×105 |
| 15 | 2.88×107 | 1.73×107 | 1.09×107 | 6.37×105 | |
| 20 | 6.18×107 | 3.69×107 | 2.34×107 | 1.41×106 | |
| 25 | 8.84×107 | 5.26×107 | 3.37×107 | 2.04×106 | |
| 30 | 1.10×108 | 6.54×107 | 4.24×107 | 2.57×106 |
| 温度/K | 压力/MPa | 溶解度参数/MPa1/2 |
|---|---|---|
| 313 | 20 | 22.97 |
| 333 | 20 | 22.78 |
| 353 | 20 | 22.65 |
| 373 | 20 | 22.38 |
| 333 | 10 | 22.76 |
| 333 | 15 | 22.79 |
| 333 | 25 | 22.82 |
| 333 | 30 | 22.82 |
Table 5 Solubility parameter of benzo[a]pyrene at different temperature and pressure
| 温度/K | 压力/MPa | 溶解度参数/MPa1/2 |
|---|---|---|
| 313 | 20 | 22.97 |
| 333 | 20 | 22.78 |
| 353 | 20 | 22.65 |
| 373 | 20 | 22.38 |
| 333 | 10 | 22.76 |
| 333 | 15 | 22.79 |
| 333 | 25 | 22.82 |
| 333 | 30 | 22.82 |
| [1] | 张晓辉. R11油藏注CO2提高采收率数值模拟应用研究[D]. 成都: 西南石油大学, 2012. |
| Zhang X H. Study on the application of numerical simulation to enhance oil recovery by CO2 injection in R11 reservoir[D]. Chengdu: Southwest Petroleum University, 2012. | |
| [2] | 秦积舜, 李永亮, 吴德斌, 等. CCUS全球进展与中国对策建议[J]. 油气地质与采收率, 2020, 27(1): 20-28. |
| Qin J S, Li Y L, Wu D B, et al. CCUS global progress and China's policy suggestions[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1): 20-28. | |
| [3] | 李向良. 温度和注入压力对二氧化碳驱油效果的影响规律实验[J]. 油气地质与采收率, 2015, 22(1): 84-92. |
| Li X L. Experimental study on the effect of temperature and injection pressure on CO2 flooding[J]. Petroleum Geology and Recovery Efficiency, 2015, 22(1): 84-92. | |
| [4] | 李蕾, 郑自刚, 杨承伟, 等. 超低渗油藏超临界CO2驱油特征及原油动用能力[J]. 科学技术与工程, 2021, 21(29): 12551-12558. |
| Li L, Zheng Z G, Yang C W, et al. Displacement characteristics and capacity of supercritical CO2 flooding in ultra low permeability reservoirs[J]. Science, Technology and Engineering, 2021, 21(29): 12551-12558. | |
| [5] | 尚德淼, 吴捷, 贾宝, 等. 陆相页岩油藏开发中超临界CO2的应用前景展望[J]. 当代化工, 2021, 50(7): 1650-1653. |
| Shang D M, Wu J, Jia B, et al. Application prospect of supercritical CO2 in continental shale reservoir development[J]. Contemporary Chemical Industry, 2021, 50(7): 1650-1653. | |
| [6] | 朱宏跃, 银建中. 超临界CO2技术在能源领域的若干应用[J]. 应用科技, 2019, 46(6): 85-91. |
| Zhu H Y, Yin J Z. Some applications of supercritical CO2 technology in energy field[J]. Applied Science and Technology, 2019, 46(6): 85-91. | |
| [7] | Wang J Y, Tian K, Li Y, et al. Diffusion coefficients of polycyclic aromatic hydrocarbons in supercritical carbon dioxide: a molecular dynamics simulation study[J]. Journal of Molecular Liquids, 2024, 409: 12547. |
| [8] | 王洁. 超临界CO2萃取葡萄籽油的工艺研究及数值模拟[D]. 杨凌: 西北农林科技大学, 2004. |
| Wang J. Study on supercritical CO2 extraction of grape seed oil and its numerical simulation[D]. Yangling: Northwest A & F University, 2004. | |
| [9] | 卢义刚, 孙小广. 液态和超临界态二氧化碳的非线性声学性质[J]. 化工学报, 2009, 60(2): 287-293. |
| Lu Y G, Sun X G. Nonlinear acoustical properties of liquid and supercritical carbon dioxide[J]. CIESC Journal, 2009, 60(2): 287-293. | |
| [10] | Rudyk S, Spirov P, Sogaard E. Application of GC-MS chromatography for the analysis of the oil fractions extracted by supercritical CO2 at high pressure[J]. Fuel, 2013, 106: 139-146. |
| [11] | Huang S X, Wang P J, Zhang Y L, et al. Energy, exergy, and economic analysis of a low-energy consumption CO2 capture system with ionic liquid [DEME][TF2N][J]. ACS Sustainable Chemistry & Engineering, 2024, 12(39): 14380-14395. |
| [12] | 张丽雅, 宋兆杰, 马平华, 等. 稠油油藏注超临界二氧化碳驱油影响因素分析[J]. 地质与勘探, 2017, 53(4): 801-806. |
| Zhang L Y, Song Z J, Ma P H, et al. Analysis on influential factors of supercritical carbon dioxide flooding in heavy-oil reservoirs[J]. Geology and Exploration[J]. Geology and Exploration, 2017, 53(4): 801-806. | |
| [13] | 李孟涛, 单文文, 刘先贵, 等. 超临界二氧化碳混相驱油机理实验研究[J]. 石油学报, 2006, 27(3): 80-83. |
| Li M T, Shan W W, Liu X G, et al. Laboratory study on miscible oil displacement mechanism of supercritical carbon dioxide[J]. Acta Petrolei Sinica, 2006, 27(3): 80-83. | |
| [14] | 张杰, 张羽臣, 邢希金, 等. 海上含油钻屑超临界CO2萃取除油研究[J]. 石油机械, 2019, 47(11): 52-58. |
| Zhang J, Zhang Y C, Xing X J, et al. Study on oily cutting de-oiling by supercritical CO2 extraction in offshore field[J]. China Petroleum Machinery, 2019, 47(11): 52-58. | |
| [15] | Wang J Y, Ding W J, Zhang B W, et al. Polycyclic aromatic hydrocarbons dissolution in supercritical carbon dioxide by molecular dynamics simulation[J]. Journal of Molecular Liquids, 2023, 391: 123358. |
| [16] | Feng H J, Gao W, Sun Z F, et al. Molecular dynamics simulation of diffusion and structure of some n-alkanes in near critical and supercritical carbon dioxide at infinite dilution[J]. The Journal of Physical Chemistry B, 2013, 117(41): 12525-12534. |
| [17] | 张军, 房体明, 王业飞, 等. 烷烃油滴在超临界二氧化碳中溶解的分子动力学模拟[J]. 中国石油大学学报(自然科学版), 2015, 39(2): 124-129. |
| Zhang J, Fang T M, Wang Y F, et al. Molecular dynamics simulation of dissolution of n-alkanes droplets in supercritical carbon dioxide[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(2): 124-129. | |
| [18] | Lv W, Gong H J, Li Y J, et al. Dissolution behaviors of alkyl block polyethers in CO2: experimental measurements and molecular dynamics simulations[J]. Chemical Engineering Science, 2020, 228: 115953. |
| [19] | 吴润楠, 魏兵, 邹鹏, 等. 超临界CO2对普通稠油和超稠油物性的影响规律[J]. 油田化学, 2018, 35(3): 440-446. |
| Wu R N, Wei B, Zou P, et al. Effect of supercritical CO2 on the physical properties of conventional heavy oil and extra-heavy oil[J]. Oilfield Chemistry, 2018, 35(3): 440-446. | |
| [20] | 王晓燕, 章杨, 严曦, 等. 超临界二氧化碳对原油萃取作用分析[J]. 油田化学, 2023, 40(2): 317-321. |
| Wang X Y, Zhang Y, Yan X, et al. Extraction effect of supercritical carbon dioxide on crude oil[J]. Oilfield Chemistry, 2023, 40(2): 317-321. | |
| [21] | Collell J, Ungerer P, Galliero G, et al. Molecular simulation of bulk organic matter in type Ⅱ shales in the middle of the oil formation window[J]. Energy & Fuels, 2014, 28(12): 7457-7466. |
| [22] | Wang J Y, Jin H. Molecular dynamics simulation investigation of the solubility parameter of supercritical carbon dioxide-cosolvent[C]//2024 9th International Conference on Smart and Sustainable Technologies (SpliTech). Bol and Split, Croatia: IEEE, 2024: 1-5. |
| [23] | 王冬爽. 促进剂对聚酯在D5中微观结构影响的分子模拟研究[D]. 郑州: 中原工学院, 2023. |
| Wang D S. Molecular simulation study on the effect of accelerator on the microstructure of polyester in D5[D]. Zhengzhou: Zhongyuan University of Technology, 2023. | |
| [24] | Du Y Z, Zhang H, Li X L, et al. Molecular dynamics study on the suitable compatibility conditions of a CO2-cosolvent-light hydrocarbon system by calculating the solubility parameters[J]. Energy & Fuels, 2020, 34(3): 3483-3492. |
| [25] | 王芳. 脂肪醇聚醚表面活性剂降低CO2驱混相压力研究[D]. 东营: 中国石油大学(华东), 2016. |
| Wang F. Study on reducing miscible pressure of CO2 flooding by aliphatic alcohol polyether surfactant[D]. Dongying: China University of Petroleum (Huadong), 2016. | |
| [26] | Lu Y J, Han J X, Yang M P, et al. Molecular simulation of supercritical CO2 extracting organic matter from coal based on the technology of CO2-ECBM[J]. Energy, 2023, 266: 126393. |
| [27] | Potoff J J, Siepmann J I. Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen[J]. AIChE Journal, 2001, 47(7): 1676-1682. |
| [28] | Andersen H C. Molecular dynamics simulations at constant pressure and/or temperature[J]. The Journal of Chemical Physics, 1980, 72(4): 2384-2393. |
| [29] | Berendsen H J C, Postma J P M, van Gunsteren W F, et al. Molecular dynamics with coupling to an external bath[J]. The Journal of Chemical Physics, 1984, 81(8): 3684-3690. |
| [30] | Wang J Y, Cao W, Wei W W, et al. Adsorption characteristic analysis of PAHs on activated carbon with different functional groups by molecular simulation[J]. Environmental Science and Pollution Research International, 2023, 30(12): 32452-32463. |
| [31] | Ding W J, Jin H, Zhao Q Y, et al. Dissolution of polycyclic aromatic hydrocarbons in supercritical water in hydrogen production process: a molecular dynamics simulation study[J]. International Journal of Hydrogen Energy, 2020, 45(52): 28062-28069. |
| [32] | Williams L L, Rubin J B, Edwards H W. Calculation of Hansen solubility parameter values for a range of pressure and temperature conditions, including the supercritical fluid region[J]. Industrial & Engineering Chemistry Research, 2004, 43(16): 4967-4972. |
| [33] | Ougiyanagi J, Meguro Y, Yoshida Z, et al. Solvent effect on distribution ratio of Pd(Ⅱ) in supercritical carbon dioxide extraction and solvent extraction using 2-methyl-8-quinolinol[J]. Talanta, 2003, 59(6): 1189-1198. |
| [34] | 成新法, 冯长根, 王耘, 等. 超临界CO2萃取中草药活性成分溶剂特性研究[J]. 化学通报, 2000(3): 66. |
| Cheng X F, Feng C G, Wang Y, et al. Study on solvent characteristics of supercritical CO2 extraction of active components from Chinese herbal medicines[J]. Chemistry, 2000(3): 66. | |
| [35] | Wang J Y, Guan M X, Zhang J, et al. Molecular dynamics simulation of polycyclic aromatic hydrocarbons solvation behavior in supercritical carbon dioxide under different pressure and temperature[J]. The Journal of Supercritical Fluids, 2024, 208: 106233. |
| [1] | Xianghai LI, Delin LAI, Gang KONG, Jian ZHOU. Molecular dynamics simulations on synergistic underwater oleophobicity mechanism of dual-biomimic surfaces [J]. CIESC Journal, 2025, 76(9): 4551-4562. |
| [2] | Guoxiang HU, Yikui ZHU, Hua LONG, Xiaowen LIU, Qingang XIONG. Study on the underlying mechanism of choline chloride-lactic acid molar ratio influencing alkali lignin solubility in choline chloride-lactic acid deep eutectic solvents [J]. CIESC Journal, 2025, 76(9): 4449-4461. |
| [3] | Jiahao LIN, Fangzhong FU, Haohui YE, Jin HU, Mingcan YAO, Helin FAN, Xu WANG, Ruixiang WANG, Zhifeng XU. Effect of NdF3 content on local structure and transport properties of NdF3-LiF molten salt [J]. CIESC Journal, 2025, 76(8): 3834-3841. |
| [4] | Xiaoling WANG, Shaoqing WANG, Yungang ZHAO, Fangzhe CHANG, Ruifeng MU. Mechanism of organic Ca transformation during coal hydropyrolysis: insights from ReaxFF molecular dynamics simulations [J]. CIESC Journal, 2025, 76(8): 4297-4309. |
| [5] | Zheng GAO, Hui WANG, Zhiguo QU. Data-driven high-throughput screening of anion-pillared metal-organic frameworks for hydrogen storage [J]. CIESC Journal, 2025, 76(8): 4259-4272. |
| [6] | Zhao GAO, Xi WU, Dan XIA, Linzhou ZHANG. Development of thermodynamics and separation unit modules of petroleum refining molecular management platform [J]. CIESC Journal, 2025, 76(7): 3212-3225. |
| [7] | Liang QIAO, Shang LI, Xinliang LIU, Ming WANG, Pei ZHANG, Yingfei HOU. Synthesis and molecular simulation of terpolymer viscosity reducer for heavy oil [J]. CIESC Journal, 2025, 76(7): 3686-3695. |
| [8] | Xiaoyu ZHANG, Jinxin LAN, Xin LI, Shilin CAO, Haili GAO, Xiaojuan MA. Study on dissolution of cellulose by [Emim]Ac-[Emim]OH-DMSO ternary system [J]. CIESC Journal, 2025, 76(7): 3226-3234. |
| [9] | Zirui LI, Kai QI, Jun WANG, Guodong XIA. Molecular dynamics study of ion rejection process based on Janus nanochannel [J]. CIESC Journal, 2025, 76(7): 3531-3538. |
| [10] | Pengguo XU, Ziheng MENG, Ganyu ZHU, Huiquan LI, Chenye WANG, Zhenhua SUN, Guocai TIAN. Study on deep carbonization process and kinetics of crude lithium carbonate with CO2 microbubbles [J]. CIESC Journal, 2025, 76(7): 3325-3338. |
| [11] | Jinbo JIANG, Zhuxin CHEN, Yangyi XIAO, Xin PENG, Yuan CHEN, Chen YU, Xiangkai MENG, Xudong PENG. Study on influence of operating conditions on thermodynamic process and steady state performance of supercritical CO2 dry gas seal [J]. CIESC Journal, 2025, 76(6): 2913-2928. |
| [12] | Zijuan LI, Xiaoyan TAN, Yongsheng WU, Chenyi YANG, Hong CHEN, Xiaogang BI, Jie LIU, Faquan YU. Molecular simulation study on CO2/N2 separation via 3D-contorted catalytic arene-norbornene annulation polymer membrane [J]. CIESC Journal, 2025, 76(5): 2348-2357. |
| [13] | Liao HE, Jun LI, Mengshu GAO, Dongyang LIU, Yuhao ZHANG, Liang ZHAO, Jinsen GAO, Chunming XU. Research progress on aromatic hydrocarbons separation from petroleum hydrocarbons [J]. CIESC Journal, 2025, 76(5): 1909-1926. |
| [14] | Hao QI, Yujie WANG, Shenhui LI, Qi ZOU, Yiqun LIU, Zhiping ZHAO. Molecular simulation study on adsorption and diffusion of C3H6 and C3H8 on Co/Zn-ZIFs [J]. CIESC Journal, 2025, 76(5): 2313-2326. |
| [15] | Jianbing CHEN, Hao CHANG, Ming GAO, Bing XING, Lei ZHANG, Qilei LIU. Phase separation prediction methodology for amine-based phase change absorbents based on reaction templates and molecular dynamics [J]. CIESC Journal, 2025, 76(5): 2387-2396. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
