CIESC Journal ›› 2025, Vol. 76 ›› Issue (5): 2101-2118.DOI: 10.11949/0438-1157.20241215
• Reviews and monographs • Previous Articles Next Articles
Yanqiu LU(
), Yang DI, Wenbo SHI, Congcong YIN, Yong WANG(
)
Received:2024-10-31
Revised:2025-01-17
Online:2025-06-13
Published:2025-05-25
Contact:
Yong WANG
通讯作者:
汪勇
作者简介:陆艳秋(1991—),女,博士,副研究员,yanqiulu@seu.edu.cn
基金资助:CLC Number:
Yanqiu LU, Yang DI, Wenbo SHI, Congcong YIN, Yong WANG. Research progress of smart responsive membranes based on novel porous organic polymers[J]. CIESC Journal, 2025, 76(5): 2101-2118.
陆艳秋, 狄扬, 石文博, 殷聪聪, 汪勇. 基于新型有机多孔聚合物的智能响应膜研究进展[J]. 化工学报, 2025, 76(5): 2101-2118.
Add to citation manager EndNote|Ris|BibTeX
Fig.4 (a) Schematic illustration of the light-switchable structural change of TbDa-Azo membrane [62]; (b) Schematic illustration of light-switchable structural change of the azo-CMP membrane[64]; (c) Schematic illustration of the temperature-switchable structural change of trZT-MOF nanosheet membrane[65]; (d) Schematic illustration of light-gated ion transport through the 2D MOF membrane [67]; (e) Schematic illustration of CC3α structure and CC3γ′ structure formed by soaking in MeOH[68]
Fig.5 (a) Schematic illustration of Na+-responsive controllable emulsion separation through B15C5-coated membranes and contact angles of the as-prepared material without and with Na+[69]; (b) Schematic illustration of the switchable wettability of CC-ZIF-PIL membrane and digital photographs of contact angle and water and oil droplets on the membrane[74]
Fig.6 (a) Schematic illustration of the voltage-gated BABD-CB membrane in the electric field[78]; (b) Schematic illustration of working principle of the electro-controlled Janus membrane[81]; (c) Proposed chemical reactivity features of COF-DT membranes at various pH values and DFT relative energies and charge distribution for the small-molecule model compound for COF-DT in acidic, neutral, and basic conditions[82]; (d) Schematic illustration of switchable Na+/K+ selectivity of COF-Cys membranes[83]
| 响应类型 | 机理 | 特点 | 响应对膜结构的调控优点和缺点 | 应用范围 |
|---|---|---|---|---|
| 光响应 | 光响应基团通过光致异构化改变膜的孔结构等,实现可控分离 | 非接触性、可控性强,适用于远程调控;响应速度快,可实现高精度分离 | 优点:无须外加化学试剂,通过光照方向和强度可灵活调控膜孔结构; 缺点:需特定波长光源,长期光照可能导致光响应基团降解,影响膜稳定性 | 纳滤、 气体分离等 |
| 温度响应 | 温敏聚合物通过相转变改变膜的孔结构等,实现可控分离 | 易操作,可利用环境温度调节,适用于多种应用环境 | 优点:通过温度可对膜孔径进行调适; 缺点:温敏聚合物的长期耐用性较低,可能导致膜性能衰减 | 纳滤、 膜抗污染等 |
| 电响应 | 外加电场通过调控膜表面的电荷分布和密度,实现可控分离 | 调控精确,响应速度快,适用于高精度分离任务 | 优点:外加电场可精准调控电荷分布,表面电荷的变化也会引起膜亲疏水性的变化; 缺点:电场分布不均可能影响电荷分布 | 纳滤、油水分离、膜抗污染等 |
| pH响应 | 酸碱性基团通过电离状态变化调节膜表面电荷密度,实现可控分离 | 对化学环境变化高度敏感,可灵活调控分离性能;适用于动态离子分离任务 | 优点:pH变化可显著调节表面电荷密度,提升对带电离子的选择性; 缺点:极端pH条件下可导致膜材料降解;酸碱溶液的使用需考虑环保问题 | 纳滤、 脱盐等 |
| 离子响应 | 通过与离子结合或解离,实现可控分离 | 选择性强,适合特定离子分离;响应行为与分离效果密切相关 | 优点:可针对特定离子调控膜表面电荷,提升离子选择性,此外,离子与膜的结合对孔径有微调作用; 缺点:对离子浓度与类型依赖较高 | 水处理、 资源回收等 |
Table 1 Characteristics and applications of smart responsive membranes
| 响应类型 | 机理 | 特点 | 响应对膜结构的调控优点和缺点 | 应用范围 |
|---|---|---|---|---|
| 光响应 | 光响应基团通过光致异构化改变膜的孔结构等,实现可控分离 | 非接触性、可控性强,适用于远程调控;响应速度快,可实现高精度分离 | 优点:无须外加化学试剂,通过光照方向和强度可灵活调控膜孔结构; 缺点:需特定波长光源,长期光照可能导致光响应基团降解,影响膜稳定性 | 纳滤、 气体分离等 |
| 温度响应 | 温敏聚合物通过相转变改变膜的孔结构等,实现可控分离 | 易操作,可利用环境温度调节,适用于多种应用环境 | 优点:通过温度可对膜孔径进行调适; 缺点:温敏聚合物的长期耐用性较低,可能导致膜性能衰减 | 纳滤、 膜抗污染等 |
| 电响应 | 外加电场通过调控膜表面的电荷分布和密度,实现可控分离 | 调控精确,响应速度快,适用于高精度分离任务 | 优点:外加电场可精准调控电荷分布,表面电荷的变化也会引起膜亲疏水性的变化; 缺点:电场分布不均可能影响电荷分布 | 纳滤、油水分离、膜抗污染等 |
| pH响应 | 酸碱性基团通过电离状态变化调节膜表面电荷密度,实现可控分离 | 对化学环境变化高度敏感,可灵活调控分离性能;适用于动态离子分离任务 | 优点:pH变化可显著调节表面电荷密度,提升对带电离子的选择性; 缺点:极端pH条件下可导致膜材料降解;酸碱溶液的使用需考虑环保问题 | 纳滤、 脱盐等 |
| 离子响应 | 通过与离子结合或解离,实现可控分离 | 选择性强,适合特定离子分离;响应行为与分离效果密切相关 | 优点:可针对特定离子调控膜表面电荷,提升离子选择性,此外,离子与膜的结合对孔径有微调作用; 缺点:对离子浓度与类型依赖较高 | 水处理、 资源回收等 |
| 1 | Wang L D, Boutilier M S H, Kidambi P R, et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes[J]. Nature Nanotechnology, 2017, 12(6): 509-522. |
| 2 | Koros W J, Zhang C. Materials for next-generation molecularly selective synthetic membranes[J]. Nature Materials, 2017, 16(3): 289-297. |
| 3 | Park H B, Kamcev J, Robeson L M, et al. Maximizing the right stuff: the trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530. |
| 4 | Gin D L, Noble R D. Designing the next generation of chemical separation membranes[J]. Science, 2011, 332(6030): 674-676. |
| 5 | Yu D H, Xiao X, Shokoohi C, et al. Recent advances in stimuli-responsive smart membranes for nanofiltration[J]. Advanced Functional Materials, 2023, 33(9): 2211983. |
| 6 | Dansawad P, Yang Y J, Li X, et al. Smart membranes for oil/water emulsions separation: a review[J]. Advanced Membranes, 2022, 2: 100039. |
| 7 | Yan D, Wang Z F, Zhang Z J. Stimuli-responsive crystalline smart materials: from rational design and fabrication to applications[J]. Accounts of Chemical Research, 2022, 55(7): 1047-1058. |
| 8 | Huang T F, Su Z X, Hou K, et al. Advanced stimuli-responsive membranes for smart separation[J]. Chemical Society Reviews, 2023, 52(13): 4173-4207. |
| 9 | Wang Z F, Zhang S N, Chen Y, et al. Covalent organic frameworks for separation applications[J]. Chemical Society Reviews, 2020, 49(3): 708-735. |
| 10 | Lu Y Q, Liu W, Liu J T, et al. A review on 2D porous organic polymers for membrane-based separations: processing and engineering of transport channels[J]. Advanced Membranes, 2021, 1: 100014. |
| 11 | Wang J Y, Zhou Y L, Liu X L, et al. Design and application of metal-organic framework membranes for gas and liquid separations[J]. Separation and Purification Technology, 2024, 329: 125178. |
| 12 | Liu G L, Yuan Y D, Wang J, et al. Process-tracing study on the postassembly modification of highly stable zirconium metal-organic cages[J]. Journal of the American Chemical Society, 2018, 140(20): 6231-6234. |
| 13 | Lal G, Derakhshandeh M, Akhtar F, et al. Mechanical properties of a metal-organic framework formed by covalent cross-linking of metal-organic polyhedra[J]. Journal of the American Chemical Society, 2019, 141(2): 1045-1053. |
| 14 | Chen X Y, Geng K Y, Liu R Y, et al. Covalent organic frameworks: chemical approaches to designer structures and built-in functions[J]. Angewandte Chemie International Edition, 2020, 59(13): 5050-5091. |
| 15 | Zhang J, Han X, Wu X W, et al. Multivariate chiral covalent organic frameworks with controlled crystallinity and stability for asymmetric catalysis[J]. Journal of the American Chemical Society, 2017, 139(24): 8277-8285. |
| 16 | Zhang S Q, Cheng G, Guo L P, et al. Strong-base-assisted synthesis of a crystalline covalent triazine framework with high hydrophilicity via benzylamine monomer for photocatalytic water splitting[J]. Angewandte Chemie International Edition, 2020, 59(15): 6007-6014. |
| 17 | Schneemann A, Bon V, Schwedler I, et al. Flexible metal-organic frameworks[J]. Chemical Society Reviews, 2014, 43(16): 6062-6096. |
| 18 | Katz J S, Burdick J A. Light-responsive biomaterials: development and applications[J]. Macromolecular Bioscience, 2010, 10(4): 339-348. |
| 19 | Díaz-Moscoso A, Ballester P. Light-responsive molecular containers[J]. Chemical Communications, 2017, 53(34): 4635-4652. |
| 20 | Gao Y Y, Han B, Zhao W Y, et al. Light-responsive actuators based on graphene[J]. Frontiers in Chemistry, 2019, 7: 506. |
| 21 | Gelebart A H, Mulder D J, Vantomme D G, et al. A rewritable, reprogrammable, dual light-responsive polymer actuator[J]. Angewandte Chemie International Edition, 2017, 56(43): 13436-13439. |
| 22 | Jerca F A, Jerca V V, Hoogenboom R. Advances and opportunities in the exciting world of azobenzenes[J]. Nature Reviews. Chemistry, 2022, 6(1): 51-69. |
| 23 | Liang H Q, Guo Y, Peng X S, et al. Light-gated cation-selective transport in metal-organic framework membranes[J]. Journal of Materials Chemistry A, 2020, 8(22): 11399-11405. |
| 24 | Liu J T, Wang S F, Huang T F, et al. Smart covalent organic networks (CONs) with “on-off-on” light-switchable pores for molecular separation[J]. Science Advances, 2020, 6(34): eabb3188. |
| 25 | Kanj A B, Müller K, Heinke L. Stimuli-responsive metal-organic frameworks with photoswitchable azobenzene side groups[J]. Macromolecular Rapid Communications, 2018, 39(1): 1700239. |
| 26 | Kumar G S, Neckers D C. Photochemistry of azobenzene-containing polymers[J]. Chemical Reviews, 1989, 89(8): 1915-1925. |
| 27 | Li J J, Zhou Y N, Luo Z H. Polymeric materials with switchable superwettability for controllable oil/water separation: a comprehensive review[J]. Progress in Polymer Science, 2018, 87: 1-33. |
| 28 | Wang Q Q, Cui J Y, Xie A T, et al. PVDF composite membrane with robust UV-induced self-cleaning performance for durable oil/water emulsions separation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 110: 130-139. |
| 29 | Liu Y N, Su Y L, Guan J Y, et al. 2D heterostructure membranes with sunlight-driven self-cleaning ability for highly efficient oil-water separation[J]. Advanced Functional Materials, 2018, 28(13): 1706545. |
| 30 | Yue R Y, Guan J, Zhang C M, et al. Photoinduced superwetting membranes for separation of oil-in-water emulsions[J]. Separation and Purification Technology, 2020, 241: 116536. |
| 31 | Zhan H, Peng N, Lei X J, et al. UV-induced self-cleanable TiO2/nanocellulose membrane for selective separation of oil/water emulsion[J]. Carbohydrate Polymers, 2018, 201: 464-470. |
| 32 | Yang Z Q, He C Q, Sui H, et al. Recent advances of CO2-responsive materials in separations[J]. Journal of CO2 Utilization, 2019, 30: 79-99. |
| 33 | Bajpai A K, Shukla S K, Bhanu S, et al. Responsive polymers in controlled drug delivery[J]. Progress in Polymer Science, 2008, 33(11): 1088-1118. |
| 34 | Roy D, Brooks W L A, Sumerlin B S. New directions in thermoresponsive polymers[J]. Chemical Society Reviews, 2013, 42(17): 7214-7243. |
| 35 | Sponchioni M, Palmiero U C, Moscatelli D. Thermo-responsive polymers: applications of smart materials in drug delivery and tissue engineering[J]. Materials Science & Engineering. C, Materials for Biological Applications, 2019, 102: 589-605.] |
| 36 | Kim Y J, Matsunaga Y T. Thermo-responsive polymers and their application as smart biomaterials[J]. Journal of Materials Chemistry. B, 2017, 5(23): 4307-4321. |
| 37 | Wei B B, Wang K, Wang J R, et al. Thermo-modulated nanofibrous skin covered Janus membranes for efficient oil/water separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641: 127935. |
| 38 | Seuring J, Agarwal S. Polymers with upper critical solution temperature in aqueous solution[J]. Macromolecular Rapid Communications, 2012, 33(22): 1898-1920. |
| 39 | Hung W S, Ho S Y, Chiao Y H, et al. Electrical tunable PVDF/graphene membrane for controlled molecule separation[J]. Chemistry of Materials, 2020, 32(13): 5750-5758. |
| 40 | Widakdo J, Chiao Y H, Lai Y L, et al. Mechanism of a self-assembling smart and electrically responsive PVDF-graphene membrane for controlled gas separation[J]. ACS Applied Materials & Interfaces, 2020, 12(27): 30915-30924. |
| 41 | Xu L L, Liu S, Yu L, et al. Tuneable ion transport by electrically responsive membranes under electrical assistance[J]. Journal of Membrane Science, 2022, 663: 121046. |
| 42 | Puguan J M C, Rathod P V, More P P, et al. Achieving transmissive-to-black chromism via engineered dual electro-thermoresponsive single-molecule for full modulation of solar transmittance[J]. Chemical Engineering Journal, 2022, 437: 135157. |
| 43 | Kahlfuss D C, Gibaud D T, Denis-Quanquin S, et al. Redox-induced molecular metamorphism promoting a sol/gel phase transition in a viologen-based coordination polymer[J]. Chemistry-A European Journal, 2018, 24(49): 13009-13019. |
| 44 | Yang Y, Xu L L, Jiang D J, et al. Self-powered controllable transdermal drug delivery system[J]. Advanced Functional Materials, 2021, 31(36): 2104092. |
| 45 | Milani G M, Coutinho I T, Ambrosio F N, et al. Poly(acrylic acid)/polypyrrole interpenetrated network as electro-responsive hydrogel for biomedical applications[J]. Journal of Applied Polymer Science, 2022, 139(18): 52091. |
| 46 | El-Samak A A, Ponnamma D, Hassan M K, et al. Designing flexible and porous fibrous membranes for oil water separation: a review of recent developments[J]. Polymer Reviews, 2020, 60(4): 671-716. |
| 47 | Cai Y H, Chen D Y, Li N J, et al. A smart membrane with antifouling capability and switchable oil wettability for high-efficiency oil/water emulsions separation[J]. Journal of Membrane Science, 2018, 555: 69-77. |
| 48 | Dübner M, Naoum M E, Spencer N D, et al. From pH- to light-response: postpolymerization modification of polymer brushes grafted onto microporous polymeric membranes[J]. ACS Omega, 2017, 2(2): 455-461. |
| 49 | Liao X F, Li H Q, Su X J, et al. Mussel-inspired cotton fabric with pH-responsive superwettability for bidirectional oil-water separation[J]. Journal of Materials Science, 2019, 54(4): 3648-3660. |
| 50 | Schoeller J, Itel F, Wuertz-Kozak K, et al. pH-responsive electrospun nanofibers and their applications[J]. Polymer Reviews, 2022, 62(2): 351-399. |
| 51 | Qu M N, He D, Luo Z X, et al. Facile preparation of a multifunctional superhydrophilic PVDF membrane for highly efficient organic dyes and heavy metal ions adsorption and oil/water emulsions separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637: 128231. |
| 52 | Al-Husaini I S, Yusoff A R M, Lau W J, et al. Fabrication of polyethersulfone electrospun nanofibrous membranes incorporated with hydrous manganese dioxide for enhanced ultrafiltration of oily solution[J]. Separation and Purification Technology, 2019, 212: 205-214. |
| 53 | Zhu L P, Smith P P, Boyes S G. pH-responsive polymers for imaging acidic biological environments in tumors[J]. Journal of Polymer Science Part B: Polymer Physics, 2013, 51(14): 1062-1067. |
| 54 | Gil E S, Hudson S M. Stimuli-reponsive polymers and their bioconjugates[J]. Progress in Polymer Science, 2004, 29(12): 1173-1222. |
| 55 | Liu Z, Liu L, Ju X J, et al. K+-recognition capsules with squirting release mechanisms[J]. Chemical Communications, 2011, 47(45): 12283-12285. |
| 56 | Mi P, Ju X J, Xie R, et al. A novel stimuli-responsive hydrogel for K+-induced controlled-release[J]. Polymer, 2010, 51(7): 1648-1653. |
| 57 | Liu Z, Luo F, Ju X J, et al. Positively K+-responsive membranes with functional gates driven by host-guest molecular recognition[J]. Advanced Functional Materials, 2012, 22(22): 4742-4750. |
| 58 | Liu Z, Luo F, Ju X J, et al. Gating membranes for water treatment: detection and removal of trace Pb2+ ions based on molecular recognition and polymer phase transition[J]. Journal of Materials Chemistry A, 2013, 1(34): 9659-9671. |
| 59 | Wu H, Jones L O, Wang Y, et al. High-efficiency gold recovery using cucurbit [6] uril[J]. ACS Applied Materials & Interfaces, 2020, 12(34): 38768-38777. |
| 60 | Fang Y Y, Deng Y, Dehaen W. Tailoring pillararene-based receptors for specific metal ion binding: from recognition to supramolecular assembly[J]. Coordination Chemistry Reviews, 2020, 415: 213313. |
| 61 | Liu W Q, Jones L O, Wu H, et al. Supramolecular gold stripping from activated carbon using α-cyclodextrin[J]. Journal of the American Chemical Society, 2021, 143(4): 1984-1992. |
| 62 | Yin C C, Zhang Z, Si Z S, et al. Smart covalent organic frameworks with intrapore azobenzene groups for light-gated ion transport[J]. Chemistry of Materials, 2022, 34(20): 9212-9220. |
| 63 | Liu P Y, Tian Z Q, Chen L. Rational design of smart metal-organic frameworks for light-modulated gas transport[J]. ACS Applied Materials & Interfaces, 2022, 14(28): 32009-32017. |
| 64 | Zhou Z Y, Chen I C, Rehman L M, et al. Conjugated microporous polymer membranes for light-gated ion transport[J]. Science Advances, 2022, 8(24): eabo2929. |
| 65 | Jia W, Wu B H, Sun S T, et al. Interfacially stable MOF nanosheet membrane with tailored nanochannels for ultrafast and thermo-responsive nanofiltration[J]. Nano Research, 2020, 13(11): 2973-2978. |
| 66 | Lin Y N, Xu Y L, Xing Y Z, et al. Three-dimensional ordered macroporous MOF-based smart gating membrane with size screening effect and aptamer specificity for highly efficient thrombin isolation[J]. Journal of Membrane Science, 2023, 665: 121132. |
| 67 | Zhou Y M, Xiong T Y, Lu J H, et al. Highly-efficient ion gating through self-assembled two-dimensional photothermal metal-organic framework membrane[J]. Angewandte Chemie International Edition, 2023, 62(21): e202302997. |
| 68 | He A, Jiang Z W, Wu Y, et al. A smart and responsive crystalline porous organic cage membrane with switchable pore apertures for graded molecular sieving[J]. Nature Materials, 2022, 21(4): 463-470. |
| 69 | Zhai H J, Qu R X, Li X Y, et al. Crown ether modified membranes for Na+-responsive controllable emulsion separation suitable for hypersaline environments[J]. Journal of Materials Chemistry A, 2020, 8(5): 2684-2690. |
| 70 | Qian W J, Texter J, Yan F. Frontiers in poly(ionic liquid)s: syntheses and applications[J]. Chemical Society Reviews, 2017, 46(4): 1124-1159. |
| 71 | Lu J M, Yan F, Texter J. Advanced applications of ionic liquids in polymer science[J]. Progress in Polymer Science, 2009, 34(5): 431-448. |
| 72 | Guo J N, Qiu L H, Deng Z J, et al. Plastic reusable pH indicator strips: preparation via anion-exchange of poly(ionic liquids) with anionic dyes[J]. Polymer Chemistry, 2013, 4(5): 1309-1312. |
| 73 | Zhang Y Y, Deng X, Zhang L R, et al. Swelling poly(ionic liquid) supported by three-dimensional wire mesh for oil/water separation[J]. ACS Applied Materials & Interfaces, 2019, 11(15): 14347-14353. |
| 74 | Ou X, Ren Y Y, Guo J N, et al. ZIF-8@poly(ionic liquid)-grafted cotton cloth for switchable water/oil emulsion separation[J]. ACS Applied Polymer Materials, 2020, 2(8): 3433-3439. |
| 75 | Du L, Quan X, Fan X F, et al. Electro-responsive carbon membranes with reversible superhydrophobicity/superhydrophilicity switch for efficient oil/water separation[J]. Separation and Purification Technology, 2019, 210: 891-899. |
| 76 | Xu L, Chen W, Mulchandani A, et al. Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic[J]. Angewandte Chemie International Edition, 2005, 44(37): 6009-6012. |
| 77 | 任慧玲, 陆成海, 孙境求, 等. 聚吡咯电响应膜的油水分离及抗污染性能[J]. 环境工程学报, 2024, 18(5): 1373-1380. |
| Ren H L, Lu C H, Sun J Q, et al. PPy electro-responsive membrane for oil/water separation and its anti-fouling performance[J]. Chinese Journal of Environmental Engineering, 2024, 18(5): 1373-1380. | |
| 78 | Wang Y, Liang R Z, Jia T Z, et al. Voltage-gated membranes incorporating cucurbit [n] uril molecular containers for molecular nanofiltration[J]. Journal of the American Chemical Society, 2022, 144(14): 6483-6492. |
| 79 | Liu X, Neoh K G, Kang E T. Redox-sensitive microporous membranes prepared from poly(vinylidene fluoride) grafted with viologen-containing polymer side chains[J]. Macromolecules, 2003, 36(22): 8361-8367. |
| 80 | Oughli A A, Vélez M, Birrell J A, et al. Viologen-modified electrodes for protection of hydrogenases from high potential inactivation while performing H2 oxidation at low overpotential[J]. Dalton Transactions, 2018, 47(31): 10685-10691. |
| 81 | Liu L, Lan H C, Cui Y Q, et al. A Janus membrane with electro-induced multi-affinity interfaces for high-efficiency water purification[J]. Science Advances, 2024, 10(21): eadn8696. |
| 82 | Cao L, Liu X W, Shinde D B, et al. Oriented two-dimensional covalent organic framework membranes with high ion flux and smart gating nanofluidic transport[J]. Angewandte Chemie International Edition, 2022, 61(6): e202113141. |
| 83 | Cao L, Chen I C, Li Z, et al. Switchable Na+ and K+ selectivity in an amino acid functionalized 2D covalent organic framework membrane[J]. Nature Communications, 2022, 13(1): 7894. |
| 84 | Zhang F L, Fan J B, Wang S T. Interfacial polymerization: from chemistry to functional materials[J]. Angewandte Chemie International Edition, 2020, 59(49): 21840-21856. |
| 85 | Ren L, Chen J X, Han J, et al. Biomimetic construction of smart nanochannels in covalent organic framework membranes for efficient ion separation[J]. Chemical Engineering Journal, 2024, 482: 148907. |
| 86 | Knebel A, Caro J. Metal-organic frameworks and covalent organic frameworks as disruptive membrane materials for energy-efficient gas separation[J]. Nature Nanotechnology, 2022, 17(9): 911-923. |
| 87 | Liu Y H, Li W, Yuan C, et al. Two-dimensional fluorinated covalent organic frameworks with tunable hydrophobicity for ultrafast oil-water separation[J]. Angewandte Chemie International Edition, 2022, 61(2): e202113348. |
| 88 | Zhao M T, Huang Y, Peng Y W, et al. Two-dimensional metal-organic framework nanosheets: synthesis and applications[J]. Chemical Society Reviews, 2018, 47(16): 6267-6295. |
| 89 | Xin Q P, Cao X T, Huang D D, et al. Smart light-responsive hierarchical metal organic frameworks constructed mixed matrix membranes for efficient gas separation[J]. Green Chemical Engineering, 2022, 3(1): 71-82. |
| 90 | Zhao H Y, Song T, Ding X L, et al. PIM-1 mixed matrix membranes incorporated with magnetic responsive cobalt-based ionic liquid for O2/N2 separation[J]. Journal of Membrane Science, 2023, 679: 121713. |
| 91 | Ying D Y, Zhang D Z, Peh S B, et al. Pressure-responsive two-dimensional metal-organic framework composite membranes for CO2 separation[J]. Angewandte Chemie International Edition, 2021, 60(20): 11318-11325. |
| 92 | Deng Z, Wan T, Chen D K, et al. Photothermal-responsive microporous nanosheets confined ionic liquid for efficient CO2 separation[J]. Small, 2020, 16(34): 2002699. |
| [1] | Pengtao GUO, Ting WANG, Bo XUE, Yunpan YING, Dahuan LIU. Ultramicroporous MOF with multiple adsorption sites for CH4/N2 separation [J]. CIESC Journal, 2025, 76(5): 2304-2312. |
| [2] | Zijuan LI, Xiaoyan TAN, Yongsheng WU, Chenyi YANG, Hong CHEN, Xiaogang BI, Jie LIU, Faquan YU. Molecular simulation study on CO2/N2 separation via 3D-contorted catalytic arene-norbornene annulation polymer membrane [J]. CIESC Journal, 2025, 76(5): 2348-2357. |
| [3] | Jingxian HUA, Yurong LUO, Yawei GU, Tingting WU, Yichang PAN, Weihong XING. Preparation of ultra-thin oriented ZIF-8 membrane for efficient ethylene/ethane separation [J]. CIESC Journal, 2025, 76(5): 2209-2218. |
| [4] | Yan LI, Meili LEI, Xingang LI. Regulation strategy of sequential simulated moving bed structure based on separation performance [J]. CIESC Journal, 2025, 76(5): 2219-2229. |
| [5] | Xin LIU, Haoren ZHENG, Qiang CHEN, Jingyi DING, Kang HUANG, Zhi XU. Cellulose nanocrystals-doped hybrid matrix membranes for vanadium flow battery [J]. CIESC Journal, 2025, 76(5): 2294-2303. |
| [6] | Yaqi BA, Tao WU, Andi DI, Anhui LU. Progress in porous carbons for efficient separation of gaseous light hydrocarbon [J]. CIESC Journal, 2025, 76(5): 2136-2157. |
| [7] | Peng TAN, Xuemei LI, Xiaoqin LIU, Linbing SUN. Study on magnetically responsive composite materials based on flexible MOFs and their propylene adsorption performance [J]. CIESC Journal, 2025, 76(5): 2230-2240. |
| [8] | Xinchen XIANG, Dan LU, Ying ZHAO, Zhikan YAO, Ruiqiang KOU, Danjun ZHENG, Zhijun ZHOU, Lin ZHANG. Preparation of highly positively charged NF membranes with surface quaternization modification and Li+/Mg2+ separation performance [J]. CIESC Journal, 2025, 76(5): 2377-2386. |
| [9] | Jinyue WANG, Enze XIE, Hanze MA, Sheng YUAN, Guangwei HE, Zhongyi JIANG. Monoatomic layer separation membrane: progress and prospect [J]. CIESC Journal, 2025, 76(5): 1943-1959. |
| [10] | Chunhui TAO, Yinhui LI, Yu FU, Ran DUAN, Zeyi ZHAO, Yufeng TANG, Gang ZHANG, Heping MA. Selective adsorption and purification of low-concentration Kr gas using various adsorbents [J]. CIESC Journal, 2025, 76(5): 2358-2366. |
| [11] | Haofan ZHAO, Haojie REN, Zongkai LIU, Guanying DONG, Yatao ZHANG. Research progress of MOFs glass membranes in gas separation applications [J]. CIESC Journal, 2025, 76(5): 2042-2054. |
| [12] | Yue ZHANG, Jiaxin LIU, Jing MA, Yi LIU. Recent progress on metal-organic framework membranes towards uranium separation from seawater [J]. CIESC Journal, 2025, 76(5): 2087-2100. |
| [13] | Jiashun LI, Wang LI, Zuzeng QIN, Tongming SU, Xinling XIE, Hongbing JI. Preparation of polyimide-reinforced lignocellulosic nanofibril aerogel and its oil-water separation performance [J]. CIESC Journal, 2025, 76(5): 2169-2185. |
| [14] | Jialang HU, Mingyuan JIANG, Lyuming JIN, Yonggang ZHANG, Peng HU, Hongbing JI. Machine learning-assisted high-throughput computational screening of MOFs and advances in gas separation research [J]. CIESC Journal, 2025, 76(5): 1973-1996. |
| [15] | Yaohui ZHANG, Yujie BAN, Weishen YANG. Vapor-phase synthesis and post-synthetic modification of metal-organic framework membranes [J]. CIESC Journal, 2025, 76(5): 2070-2086. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||