CIESC Journal ›› 2025, Vol. 76 ›› Issue (5): 2241-2250.DOI: 10.11949/0438-1157.20241262
• Separation engineering • Previous Articles Next Articles
Han LIU(
), Jiaxin CUI, Mengfan YIN, Tao ZHENG, Rui ZHANG(
), Xianghai MENG, Zhichang LIU, Haiyan LIU, Chunming XU
Received:2024-11-08
Revised:2024-12-20
Online:2025-06-13
Published:2025-05-25
Contact:
Rui ZHANG
刘晗(
), 崔家馨, 殷梦凡, 郑涛, 张睿(
), 孟祥海, 刘植昌, 刘海燕, 徐春明
通讯作者:
张睿
作者简介:刘晗(1996—),女,博士研究生,421998678@qq.com
基金资助:CLC Number:
Han LIU, Jiaxin CUI, Mengfan YIN, Tao ZHENG, Rui ZHANG, Xianghai MENG, Zhichang LIU, Haiyan LIU, Chunming XU. Crystal structure of xylene·CuAlCl4 and measurement of solid-liquid equilibrium of binary system[J]. CIESC Journal, 2025, 76(5): 2241-2250.
刘晗, 崔家馨, 殷梦凡, 郑涛, 张睿, 孟祥海, 刘植昌, 刘海燕, 徐春明. CuAlCl4-二甲苯络合物晶体结构及二元固液相平衡测定[J]. 化工学报, 2025, 76(5): 2241-2250.
Add to citation manager EndNote|Ris|BibTeX
| Item | 2PX·CuAlCl4 | 2MX·CuAlCl4 | 2OX·CuAlCl4 |
|---|---|---|---|
| empirical formula | C16H20CuAlCl4 | C16H20CuAlCl4 | C16H20CuAlCl4 |
| molecular weight | 444.64 | 444.64 | 444.64 |
| crystal system | monoclinic | triclinic | orthorhombic |
| space group | Pc | P-1 | Pnma |
| a/nm | 7.8018(2) | 8.1933(7) | 15.8666(5) |
| b/nm | 27.2834(5) | 8.5770(6) | 19.1064(5) |
| c/nm | 18.3534(4) | 14.8398(7) | 6.3201(2) |
| α/(°) | 90 | 90.451(4) | 90 |
| β/(°) | 96.112(2) | 93.877(5) | 90 |
| γ/(°) | 90 | 105.355(7) | 90 |
| volume/nm3 | 3884.49(15) | 1002.96(12) | 1915.96(10) |
| Z | 8 | 2 | 4 |
| calculated density ( g·cm-3) | 1.521 | 1.472 | 1.541 |
| F(000) | 1808 | 452 | 904 |
| θ range/(°) | 4.708—54.968 | 4.926—54.968 | 5.134—58.91 |
| goodness-of-fit on F2 | 1.009 | 1.072 | 1.032 |
| R1,wR2[I>2σ(I)]* | R1 = 0.0315, wR2 = 0.0650 | R1 = 0.0490, wR2 = 0.1369 | R1 = 0.0263, wR2 = 0.0797 |
| R1,wR2(all data)* | R1 = 0.0399, wR2 = 0.0680 | R1 = 0.0610, wR2 = 0.1465 | R1 = 0.0331, wR2 = 0.0830 |
Table 1 Crystal data of 2PX·CuAlCl4, 2MX·CuAlCl4 and 2OX·CuAlCl4
| Item | 2PX·CuAlCl4 | 2MX·CuAlCl4 | 2OX·CuAlCl4 |
|---|---|---|---|
| empirical formula | C16H20CuAlCl4 | C16H20CuAlCl4 | C16H20CuAlCl4 |
| molecular weight | 444.64 | 444.64 | 444.64 |
| crystal system | monoclinic | triclinic | orthorhombic |
| space group | Pc | P-1 | Pnma |
| a/nm | 7.8018(2) | 8.1933(7) | 15.8666(5) |
| b/nm | 27.2834(5) | 8.5770(6) | 19.1064(5) |
| c/nm | 18.3534(4) | 14.8398(7) | 6.3201(2) |
| α/(°) | 90 | 90.451(4) | 90 |
| β/(°) | 96.112(2) | 93.877(5) | 90 |
| γ/(°) | 90 | 105.355(7) | 90 |
| volume/nm3 | 3884.49(15) | 1002.96(12) | 1915.96(10) |
| Z | 8 | 2 | 4 |
| calculated density ( g·cm-3) | 1.521 | 1.472 | 1.541 |
| F(000) | 1808 | 452 | 904 |
| θ range/(°) | 4.708—54.968 | 4.926—54.968 | 5.134—58.91 |
| goodness-of-fit on F2 | 1.009 | 1.072 | 1.032 |
| R1,wR2[I>2σ(I)]* | R1 = 0.0315, wR2 = 0.0650 | R1 = 0.0490, wR2 = 0.1369 | R1 = 0.0263, wR2 = 0.0797 |
| R1,wR2(all data)* | R1 = 0.0399, wR2 = 0.0680 | R1 = 0.0610, wR2 = 0.1465 | R1 = 0.0331, wR2 = 0.0830 |
| Bond | Bond length/Å | ||
|---|---|---|---|
| 2PX·CuAlCl4 | 2MX·CuAlCl4 | 2OX·CuAlCl4 | |
| Cu—C | 2.251(4) | 2.173(3) | 2.152(15) |
| 2.364(4) | 2.317(3) | 2.152(15) | |
| 2.218(4) | 2.314(3) | 2.415(18) | |
| 2.255(4) | 2.143(3) | 2.415(18) | |
| Cu—Cl | 2.616(12) | 2.354(7) | 2.297(6) |
| Al—Cl | 2.164(16) | 2.191 (11) | 2.177(7) |
| 2.161(16) | 2.117(10) | 2.127 (7) | |
| 2.118(17) | 2.104(12) | 2.121 (5) | |
| 2.108(16) | 2.121(11) | 2.121(5) | |
Table 2 Bond lengths of 2PX·CuAlCl4, 2MX·CuAlCl4 and 2OX·CuAlCl4
| Bond | Bond length/Å | ||
|---|---|---|---|
| 2PX·CuAlCl4 | 2MX·CuAlCl4 | 2OX·CuAlCl4 | |
| Cu—C | 2.251(4) | 2.173(3) | 2.152(15) |
| 2.364(4) | 2.317(3) | 2.152(15) | |
| 2.218(4) | 2.314(3) | 2.415(18) | |
| 2.255(4) | 2.143(3) | 2.415(18) | |
| Cu—Cl | 2.616(12) | 2.354(7) | 2.297(6) |
| Al—Cl | 2.164(16) | 2.191 (11) | 2.177(7) |
| 2.161(16) | 2.117(10) | 2.127 (7) | |
| 2.118(17) | 2.104(12) | 2.121 (5) | |
| 2.108(16) | 2.121(11) | 2.121(5) | |
| 物质 | 熔点/℃ | 熔化焓/(kJ·mol-1) |
|---|---|---|
| 2PX·CuAlCl4 | 41.0 | 14.36 |
| 2OX·CuAlCl4 | 55.7 | 17.71 |
| 2MX·CuAlCl4 | 15.1 | 17.80 |
| PX | 13.3[ | 17.11[ |
| OX | -25.2[ | 13.60[ |
| MX | -47.9[ | 11.57[ |
Table 3 Melting point and melting enthalpy of complexes
| 物质 | 熔点/℃ | 熔化焓/(kJ·mol-1) |
|---|---|---|
| 2PX·CuAlCl4 | 41.0 | 14.36 |
| 2OX·CuAlCl4 | 55.7 | 17.71 |
| 2MX·CuAlCl4 | 15.1 | 17.80 |
| PX | 13.3[ | 17.11[ |
| OX | -25.2[ | 13.60[ |
| MX | -47.9[ | 11.57[ |
| x1 | Texp/℃ | Tid/℃ |
|---|---|---|
| 0 | 15.17 | 15.10 |
| 0.0962 | 11.13 | 11.23 |
| 0.2082 | 7.07 | 6.32 |
| 0.3182 | 0.63 | 0.96 |
| 0.3969 | -3.37 | -3.27 |
| 0.4936 | 3.63 | 5.24 |
| 0.5976 | 12.73 | 14.09 |
| 0.6905 | 20.83 | 21.17 |
| 0.7849 | 28.77 | 27.74 |
| 0.8950 | 34.97 | 34.78 |
| 1.0000 | 40.93 | 40.99 |
| DAR/% | 0.19 | |
Table 4 Phase equilibrium data of 2PX·CuAlCl4/2MX·CuAlCl4 binary system
| x1 | Texp/℃ | Tid/℃ |
|---|---|---|
| 0 | 15.17 | 15.10 |
| 0.0962 | 11.13 | 11.23 |
| 0.2082 | 7.07 | 6.32 |
| 0.3182 | 0.63 | 0.96 |
| 0.3969 | -3.37 | -3.27 |
| 0.4936 | 3.63 | 5.24 |
| 0.5976 | 12.73 | 14.09 |
| 0.6905 | 20.83 | 21.17 |
| 0.7849 | 28.77 | 27.74 |
| 0.8950 | 34.97 | 34.78 |
| 1.0000 | 40.93 | 40.99 |
| DAR/% | 0.19 | |
| x1 | Texp/℃ | Tid/℃ |
|---|---|---|
| 0 | 55.53 | 55.65 |
| 0.0953 | 47.93 | 50.64 |
| 0.1915 | 43.33 | 45.21 |
| 0.3169 | 33.93 | 37.38 |
| 0.4076 | 29.33 | 31.07 |
| 0.5062 | 21.23 | 23.36 |
| 0.6107 | 14.83 | 13.86 |
| 0.7149 | 24.37 | 22.92 |
| 0.8021 | 27.73 | 28.88 |
| 0.9087 | 35.33 | 35.61 |
| 1.0000 | 40.93 | 40.99 |
| DAR/% | 0.47 | |
Table 5 Phase equilibrium data of 2PX·CuAlCl4/2OX·CuAlCl4 binary system
| x1 | Texp/℃ | Tid/℃ |
|---|---|---|
| 0 | 55.53 | 55.65 |
| 0.0953 | 47.93 | 50.64 |
| 0.1915 | 43.33 | 45.21 |
| 0.3169 | 33.93 | 37.38 |
| 0.4076 | 29.33 | 31.07 |
| 0.5062 | 21.23 | 23.36 |
| 0.6107 | 14.83 | 13.86 |
| 0.7149 | 24.37 | 22.92 |
| 0.8021 | 27.73 | 28.88 |
| 0.9087 | 35.33 | 35.61 |
| 1.0000 | 40.93 | 40.99 |
| DAR/% | 0.47 | |
| 体系 | 原料组成/% | 晶体组成/% | ||
|---|---|---|---|---|
| PX | MX或OX | PX | MX或OX | |
| 2PX·CuAlCl4/2MX·CuAlCl4 | 20.82 | 79.18 | 1.55 | 98.45 |
| 78.49 | 21.51 | 97.94 | 2.06 | |
| 2PX·CuAlCl4/2OX·CuAlCl4 | 19.15 | 79.18 | 1.88 | 98.12 |
| 80.21 | 21.51 | 98.73 | 1.26 | |
Table 6 Results of crystallization separation experiments
| 体系 | 原料组成/% | 晶体组成/% | ||
|---|---|---|---|---|
| PX | MX或OX | PX | MX或OX | |
| 2PX·CuAlCl4/2MX·CuAlCl4 | 20.82 | 79.18 | 1.55 | 98.45 |
| 78.49 | 21.51 | 97.94 | 2.06 | |
| 2PX·CuAlCl4/2OX·CuAlCl4 | 19.15 | 79.18 | 1.88 | 98.12 |
| 80.21 | 21.51 | 98.73 | 1.26 | |
| 1 | Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
| 2 | Yang Y X, Bai P, Guo X H. Separation of xylene isomers: a review of recent advances in materials[J]. Industrial & Engineering Chemistry Research, 2017, 56(50): 14725-14753. |
| 3 | Zhang G W, Ding Y J, Hashem A, et al. Xylene isomer separations by intrinsically porous molecular materials[J]. Cell Reports Physical Science, 2021, 2(6): 100470. |
| 4 | Gao M Y, Wang S Q, Bezrukov A A, et al. Switching adsorbent layered material that enables stepwise capture of C8 aromatics via single-crystal-to-single-crystal transformations[J]. Chemistry of Materials, 2023, 35(23): 10001-10008. |
| 5 | Mohameed H A, Abu Jdayil B, Takrouri K. Separation of para-xylene from xylene mixture via crystallization[J]. Chemical Engineering and Processing: Process Intensification, 2007, 46(1): 25-36. |
| 6 | Li L Y, Guo L D, Olson D H, et al. Discrimination of xylene isomers in a stacked coordination polymer[J]. Science, 2022, 377(6603): 335-339. |
| 7 | Ueno T. Japan gas-chemical xylene separation process[J]. Bulletin of the Japan Petroleum Institute, 1970, 12: 171-176. |
| 8 | 赵毓璋. 高纯度间二甲苯生产技术及下游产品的开发应用[J]. 石油炼制与化工, 2000, 31(6): 26-31. |
| Zhao Y Z. Technology for producing high purity m-xylene and the application & development of its down stream products[J]. Petroleum Processing and Petrochemicals, 2000, 31(6): 26-31. | |
| 9 | 周玉梅, 刘晓勤, 姚虎卿. π络合吸附分离技术的研究进展[J]. 石油化工, 2005, 34(10): 1004-1009. |
| Zhou Y M, Liu X Q, Yao H Q. Review of adsorption separation via π-complexation[J]. Petrochemical Technology, 2005, 34(10): 1004-1009. | |
| 10 | 廖恒易. 络合吸附技术在气体纯化过程中的应用[J]. 低温与特气, 2016, 34(5): 42-44. |
| Liao H Y. The application of complex adsorption technology in the gas purification process[J]. Low Temperature and Specialty Gases, 2016, 34(5): 42-44. | |
| 11 | 殷梦凡, 唐政, 张睿, 等. 离子液体液液萃取分离正辛烷/邻二甲苯[J]. 化工学报, 2021, 72(12): 6282-6290. |
| Yin M F, Tang Z, Zhang R, et al. Separation of n-octane and o-xylene by liquid-liquid extraction with ionic liquids[J]. CIESC Journal, 2021, 72(12): 6282-6290. | |
| 12 | 徐春明, 殷梦凡, 童浩, 等. 离子液体萃取分离石脑油中芳烃的理论计算与试验验证[J]. 中国石油大学学报(自然科学版), 2023, 47(5): 138-145. |
| Xu C M, Yin M F, Tong H, et al. Theoretical calculation and experimental verification of aromatics extraction from naphtha by ionic liquids[J]. Journal of China University of Petroleum(Edition of Natural Science), 2023, 47(5): 138-145. | |
| 13 | Sullivan R M, Liu H M, Smith D S, et al. Sorptive reconstruction of the CuAlCl4 framework upon reversible ethylene binding[J]. Journal of the American Chemical Society, 2003, 125(36): 11065-11079. |
| 14 | Capracotta M D, Sullivan R M, Martin J D. Sorptive reconstruction of CuMCl4 (M = Al and Ga) upon small-molecule binding and the competitive binding of CO and ethylene[J]. Journal of the American Chemical Society, 2006, 128(41): 13463-13473. |
| 15 | Haase D J, Duke P M, Cates J W. CO recovery and purification[J]. Hydrocarbon Process, 1982, 61(3): 103-107. |
| 16 | Safarik D J, Eldridge R B. Olefin/paraffin separations by reactive absorption: a review[J]. Industrial & Engineering Chemistry Research, 1998, 37(7): 2571-2581. |
| 17 | 唐政, 郑涛, 刘晗, 等. 双金属卤化物络合萃取分离直馏石脑油中的芳烃[J]. 化工学报, 2023, 74(12): 4926-4933. |
| Tang Z, Zheng T, Liu H, et al. Separation of aromatics from straight-run naphtha by complexation extraction using bimetallic halides[J]. CIESC Journal, 2023, 74(12): 4926-4933. | |
| 18 | Tang Z, Zheng T, Liu H, et al. Separation of aromatic hydrocarbons from straight-run naphtha by bimetallic halides[J]. Energy & Fuels, 2024, 38(4): 3262-3274. |
| 19 | Turner R W, Amma E L. Metal ion-aromatic complexes (Ⅲ): The crystal and molecular structure of C6H6·CuAlCl4 [J]. Journal of the American Chemical Society, 1966, 88(9): 1877-1882. |
| 20 | Pérez-Galán P, Delpont N, Herrero-Gómez E, et al. Metal-arene interactions in dialkylbiarylphosphane complexes of copper, silver, and gold[J]. Chemistry-A European Journal, 2010, 16(18): 5324-5332. |
| 21 | Turner R W, Amma E L. Metal ion-aromatic complexes (Ⅳ): Five-coordinate silver(Ⅰ) in C6H6·AgAlCl4 [J]. Journal of the American Chemical Society, 1966, 88(14): 3243-3247. |
| 22 | Amma E L, Hall Griffith E A. Metal ion-aromatic complexes (Ⅺ): Crystal and molecular structure of bis(cyclohexylbenzene)silver(Ⅰ) perchlorate[J]. Journal of the American Chemical Society, 1971, 93(13): 3167-3172. |
| 23 | Clayton P R, Cassell S, Staveley L A K. The heat capacity of the complex: AgClO4·C6H6 [J]. The Journal of Chemical Thermodynamics, 1978, 10(4): 387-394. |
| 24 | 魏东炜, 朱璟. 4-羟基苯甲醛及其溴代物三元固液平衡[J]. 化工学报, 2008, 59(9): 2159-2162. |
| Wei D W, Zhu J. Solid-liquid equilibrium for a ternary system of 4-hydroxybenzaldehyde and its bromoderivatives[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(9): 2159-2162. | |
| 25 | 向瑞, 艾波, 吴高胜, 等. 锂电添加剂FEC-VC二元体系固液平衡数据的测定及回归[J]. 化工进展, 2024, 43(8): 4246-4252. |
| Xiang R, Ai B, Wu G S, et al. Measurement and regression of solid-liquid binary equilibrium data for lithium battery additive FEC-VC system[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4246-4252. | |
| 26 | Jakob A, Joh R, Rose C, et al. Solid-liquid equilibria in binary mixtures of organic compounds[J]. Fluid Phase Equilibria, 1995, 113(1/2): 117-126. |
| 27 | 陈亮, 肖剑, 谢在库, 等. 对二甲苯结晶过程的固液相平衡研究[J]. 聚酯工业, 2009, 22(1): 7-11. |
| Chen L, Xiao J, Xie Z K, et al. Solid-liquid equilibrium study of p-xylene crystallization process[J]. Polyester Industry, 2009, 22(1): 7-11. | |
| 28 | 许奎, 朱静, 刘博文, 等. 邻碘苯胺与对碘苯胺固液相图测定及数据关联[J]. 化学工程, 2018, 46(1): 43-45. |
| Xu K, Zhu J, Liu B W, et al. Determination and correlation of solid-liquid phase diagram of o-iodoaniline and p-iodoaniline[J]. Chemical Engineering(China), 2018, 46(1): 43-45. | |
| 29 | 包秀, 吴顺, 沈卫华, 等. 碳酸乙烯酯+2-𫫇唑烷酮二元体系固液相平衡预测[J]. 化学工程, 2023, 51(10): 64-67, 78. |
| Bao X, Wu S, Shen W H, et al. Prediction of solid-liquid phase equilibrium of ethylene carbonate+2-oxazolidone binary system[J]. Chemical Engineering(China), 2023, 51(10): 64-67, 78. | |
| 30 | 何广湘, 杨索和, 李文艳, 等. 2, 6-DIPN与2, 7-DIPN二元体系固液相图的测定和关联[J]. 化学工业与工程, 2010, 27(1): 26-29. |
| He G X, Yang S H, Li W Y, et al. Determination and correlation of solid-liquid equilibrium of 2, 6-DIPN and 2, 7-DIPN[J]. Chemical Industry and Engineering, 2010, 27(1): 26-29. | |
| 31 | Sheldrick G M. Crystal structure refinement with SHELXL[J]. Acta Crystallographica. Section C, Structural Chemistry, 2015, 71(1): 3-8. |
| 32 | de Goede R, van Rosmalen G M, Hakvoort G. Solid-liquid equilibria in para-/meta-xvlene and para-/ortho-xylene binary mixtures at atmospheric pressure[J]. Thermochimica Acta, 1989, 156(2): 299-312. |
| 33 | Wu C Y, Cheng Y W, Wang L J, et al. Solid-liquid equilibrium of dimethyl terephthalate (DMT), dimethyl isophthalate (DMI) and dimethyl phthalate (DMP) in melt crystallization process[J]. Chinese Journal of Chemical Engineering, 2017, 25(12): 1735-1739. |
| 34 | 熊献金. 对二甲苯结晶相关体系固液相平衡计算[J]. 炼油技术与工程, 2021, 51(4): 42-46. |
| Xiong X J. Calculation of solid-liquid phase equilibrium for p-xylene crystallization system[J]. Petroleum Refinery Engineering, 2021, 51(4): 42-46. | |
| 35 | 陈新志, 蔡振云, 钱超, 等. 化工热力学[M]. 5版. 北京: 化学工业出版社, 2020: 312. |
| Chen X Z, Cai Z Y, Qian C, et al. Chemical Engineering Thermodynamics[M]. 5th ed. Beijing: Chemical Industry Press, 2020: 312. | |
| 36 | Prausnitz J, Azevedo E, Lichtenthaler R. Molecular Thermo-Dynamics of Fluid-Phase Equilibria[M]. New York: Prentice Hall, 1998: 275. |
| [1] | Ying LIU, Fang ZHENG, Qiwei YANG, Zhiguo ZHANG, Qilong REN, Zongbi BAO. Recent progress in adsorption and separation of xylene isomers [J]. CIESC Journal, 2024, 75(4): 1081-1095. |
| [2] | YU Chengtao, HAN Lili, BAO Jianna, XIE Qing, SHAN Guorong, BAO Yongzhong, PAN Pengju. Research progress on stereocomplex crystallization of poly(lactic acid) enantiomeric blends [J]. CIESC Journal, 2016, 67(2): 390-396. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||