CIESC Journal ›› 2024, Vol. 75 ›› Issue (4): 1081-1095.DOI: 10.11949/0438-1157.20231189
• Reviews and monographs • Previous Articles Next Articles
Ying LIU1(), Fang ZHENG2(), Qiwei YANG1,2, Zhiguo ZHANG1,3, Qilong REN1,2, Zongbi BAO1,2()
Received:
2023-11-17
Revised:
2024-02-06
Online:
2024-06-06
Published:
2024-04-25
Contact:
Fang ZHENG, Zongbi BAO
刘莹1(), 郑芳2(), 杨启炜1,2, 张治国1,3, 任其龙1,2, 鲍宗必1,2()
通讯作者:
郑芳,鲍宗必
作者简介:
刘莹(1995—),女,博士,博士后,liuying_ly@zju.edu.com
基金资助:
CLC Number:
Ying LIU, Fang ZHENG, Qiwei YANG, Zhiguo ZHANG, Qilong REN, Zongbi BAO. Recent progress in adsorption and separation of xylene isomers[J]. CIESC Journal, 2024, 75(4): 1081-1095.
刘莹, 郑芳, 杨启炜, 张治国, 任其龙, 鲍宗必. 二甲苯异构体吸附分离研究进展[J]. 化工学报, 2024, 75(4): 1081-1095.
Add to citation manager EndNote|Ris|BibTeX
C8芳烃 | 沸点/K | 凝固点/K | 动力学直径/Å | 三维尺寸/Å×Å×Å | 三维尺寸纵横比 | 偶极矩/(10-18esu·cm) | 极化率/(10-25 cm3) |
---|---|---|---|---|---|---|---|
PX | 411.5 | 286.4 | 5.8 | 6.6×3.8×9.1 | 1.38 | 0.10 | 137~149 |
OX | 417.6 | 248.0 | 6.8 | 7.3×3.8×7.8 | 1.07 | 0.64 | 141~149 |
MX | 412.3 | 222.5 | 6.8 | 7.3×4.0×9.0 | 1.23 | 0.37 | 142 |
EB | 409.4 | 178.2 | 5.8 | 6.6×5.3×9.4 | 1.42 | 0.59 | 142 |
Table 1 Physical properties of C8 aromatic isomers[68-69]
C8芳烃 | 沸点/K | 凝固点/K | 动力学直径/Å | 三维尺寸/Å×Å×Å | 三维尺寸纵横比 | 偶极矩/(10-18esu·cm) | 极化率/(10-25 cm3) |
---|---|---|---|---|---|---|---|
PX | 411.5 | 286.4 | 5.8 | 6.6×3.8×9.1 | 1.38 | 0.10 | 137~149 |
OX | 417.6 | 248.0 | 6.8 | 7.3×3.8×7.8 | 1.07 | 0.64 | 141~149 |
MX | 412.3 | 222.5 | 6.8 | 7.3×4.0×9.0 | 1.23 | 0.37 | 142 |
EB | 409.4 | 178.2 | 5.8 | 6.6×5.3×9.4 | 1.42 | 0.59 | 142 |
Fig.3 Vapor adsorption isotherms of C8 aromatics on Co2(dobdc) at 423 K (a), breakthrough curves of C8 aromatic vapor mixtures on Co2(dobdc) at 398 K (b), and structural distortion of Co2(dobdc) upon adsorption of OX (c)
Fig.7 Structure of [Mn(dhbq)(H2O)2](a); Structures and distance between substituents of xylene isomers (b); Vapor adsorption isotherms and vapor-phase breakthrough curves on Mn(dhbq) (c); Binding sites of Mn(dhbq) for adsorbing xylene isomers(d)
超分子材料 | 分类 | 吸附偏好 | 选择性 | 实验方法 | 文献 |
---|---|---|---|---|---|
CC3 | 有机分子笼 | PX | PX/OX=2.9①, PX/MX=1.5① | 气相静态吸附 | [ |
AZO-cage | 有机分子笼 | PX | PX/OX=15.6, PX/MX=10.9 | 气相静态吸附 | [ |
AZO-cage | 有机分子笼 | PX | PX/OX=12.1, PX/MX=7.3 | 气相静态吸附 | [ |
EtP5 | 有机分子大环 | PX | PX/OX=1.9①, PX/MX=2.1① | 气相静态吸附 | [ |
EtP6 | 有机分子大环 | PX | PX/OX=14.3①, PX/MX=10.2① | 气相静态吸附 | [ |
AgLClO4 | 金属有机化合物 | PX | PX/OX=20.3, PX/MX=5.4 | 气相静态吸附 | [ |
AgLClO4 | 金属有机化合物 | PX | PX/OX=24.0, PX/MX=16.2 | 气相静态吸附 | [ |
[Ni(NCS)2(ppp)4] | 金属有机化合物 | OX | OX/PX=40.5, OX/MX=34.2 | 气相静态吸附 | [ |
[Cu2(bitmb)2Cl4] | 金属有机大环 | PX | PX/OX=51.5, PX/MX=65.7 | 液相静态吸附 | [ |
G2NDS | 氢键有机框架 | PX | PX/OX=36.0, PX/MX=160.0 | 液相静态吸附 | [ |
Table 2 Summary of xylene isomers separation performance of supramolecular materials
超分子材料 | 分类 | 吸附偏好 | 选择性 | 实验方法 | 文献 |
---|---|---|---|---|---|
CC3 | 有机分子笼 | PX | PX/OX=2.9①, PX/MX=1.5① | 气相静态吸附 | [ |
AZO-cage | 有机分子笼 | PX | PX/OX=15.6, PX/MX=10.9 | 气相静态吸附 | [ |
AZO-cage | 有机分子笼 | PX | PX/OX=12.1, PX/MX=7.3 | 气相静态吸附 | [ |
EtP5 | 有机分子大环 | PX | PX/OX=1.9①, PX/MX=2.1① | 气相静态吸附 | [ |
EtP6 | 有机分子大环 | PX | PX/OX=14.3①, PX/MX=10.2① | 气相静态吸附 | [ |
AgLClO4 | 金属有机化合物 | PX | PX/OX=20.3, PX/MX=5.4 | 气相静态吸附 | [ |
AgLClO4 | 金属有机化合物 | PX | PX/OX=24.0, PX/MX=16.2 | 气相静态吸附 | [ |
[Ni(NCS)2(ppp)4] | 金属有机化合物 | OX | OX/PX=40.5, OX/MX=34.2 | 气相静态吸附 | [ |
[Cu2(bitmb)2Cl4] | 金属有机大环 | PX | PX/OX=51.5, PX/MX=65.7 | 液相静态吸附 | [ |
G2NDS | 氢键有机框架 | PX | PX/OX=36.0, PX/MX=160.0 | 液相静态吸附 | [ |
Fig.9 Separation selectivity comparison of PX, OX selective MOFs and supramolecular materials○calculated by gas-phase static adsorption data;△calculated by liquid-phase static adsorption data;□calculated by chromatography data;◇calculated by liquid-phase breakthrough curve; calculated by gas-phase breakthrough curve
1 | Cannella W J. Kirk-othmer Encyclopedia of Chemical Technology[M]. New York: John Wiley & Sons Inc., 2005. |
2 | Yang Y X, Bai P, Guo X H. Separation of xylene isomers: a review of recent advances in materials[J]. Industrial & Engineering Chemistry Research, 2017, 56(50): 14725-14753. |
3 | Shi Q, Gonçalves J C, Ferreira A F P, et al. A review of advances in production and separation of xylene isomers[J]. Chemical Engineering and Processing - Process Intensification, 2021, 169: 108603. |
4 | Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532: 435-437. |
5 | Minceva M, Rodrigues A E. Understanding and revamping of industrial scale SMB units for p-xylene separation[J]. AIChE Journal, 2007, 53(1): 138-149. |
6 | Cheng L S, Johnson J A. Adsorbents with improved mass transfer properties and their use in the adsorptive separation of para-xylene: US8609925[P]. 2013-12-17. |
7 | 杨彦强, 柏成钢, 王红超, 等. 对二甲苯吸附剂RAX-4000的工业应用特点[J]. 石油炼制与化工, 2023, 54(7): 41-45. |
Yang Y Q, Bai C G, Wang H C, et al. Commercial application of adsorbent RAX-4000[J]. Petroleum Processing and Petrochemicals, 2023, 54(7): 41-45. | |
8 | Guisnet M, Gilson J P. Zeolites for Cleaner Technologies[M]. London: Imperial College Press, 2002. |
9 | Santos K A O, Dantas Neto A A, Moura M C P A, et al. Separation of xylene isomers through adsorption on microporous materials: a review[J]. Brazilian Journal of Petroleum and Gas, 2011, 5(4): 255-268. |
10 | Zhang Z Q, Peh S B, Kang C J, et al. Metal-organic frameworks for C6—C8 hydrocarbon separations[J]. EnergyChem, 2021, 3: 100057. |
11 | Moosa B, Alimi L O, Shkurenko A, et al. A polymorphic azobenzene cage for energy-efficient and highly selective p-xylene separation[J]. Angewandte Chemie International Edition, 2020, 59(48): 21367-21371. |
12 | Zhang G W, Emwas A H, Shahul Hameed U F, et al. Shape-induced selective separation of ortho-substituted benzene isomers enabled by cucurbit[7]uril host macrocycles[J]. Chem, 2020, 6(5): 1082-1096. |
13 | Mitra T, Jelfs K E, Schmidtmann M, et al. Molecular shape sorting using molecular organic cages[J]. Nature Chemistry, 2013, 5: 276-281. |
14 | Zhou Y, Zhang J L, Wang L, et al. Self-assembled iron-containing mordenite monolith for carbon dioxide sieving[J]. Science, 2021, 373(6552): 315-320. |
15 | Zhou H, Yi X F, Hui Y, et al. Isolated boron in zeolite for oxidative dehydrogenation of propane[J]. Science, 2021, 372(6537): 76-80. |
16 | Bellat J P, Simonot-Grange M H, Jullian S. Adsorption of gaseous p-xylene and m-xylene on NaY, KY, and BaY zeolites(1). Adsorption equilibria of pure xylenes[J]. Zeolites, 1995, 15(2): 124-130. |
17 | Minceva M, Rodrigues A E. Adsorption of xylenes on faujasite-type zeolite[J]. Chemical Engineering Research and Design, 2004, 82(5): 667-681. |
18 | Buarque H L B, Chiavone-Filho O, Cavalcante C L. Adsorption equilibria of C8 aromatic liquid mixtures on Y zeolites using headspace chromatography[J]. Separation Science and Technology, 2005, 40(9): 1817-1834. |
19 | Moïse J C, Bellat J P. Effect of preadsorbed water on the adsorption of p-xylene and m-xylene mixtures on BaX and BaY zeolites[J]. Journal of Physical Chemistry B, 2005, 109(36): 17239-17244. |
20 | Daems I, Leflaive P, Méthivier A, et al. Influence of Si∶Al-ratio of faujasites on the adsorption of alkanes, alkenes and aromatics[J]. Microporous and Mesoporous Materials, 2006, 96(1/2/3): 149-156. |
21 | Kumar P, Kim D W, Rangnekar N, et al. One-dimensional intergrowths in two-dimensional zeolite nanosheets and their effect on ultra-selective transport[J]. Nature Materials, 2020, 19: 443-449. |
22 | Daramola M O, Burger A J, Pera-Titus M, et al. Xylene vapor mixture separation in nanocomposite MFI-alumina tubular membranes: influence of operating variables[J]. Separation Science and Technology, 2009, 45(1): 21-27. |
23 | Yuan W H, Lin Y S, Yang W S. Molecular sieving MFI-type zeolite membranes for pervaporation separation of xylene isomers[J]. Journal of the American Chemical Society, 2004, 126(15): 4776-4777. |
24 | Sakai H, Tomita T, Takahashi T. p-Xylene separation with MFI-type zeolite membrane[J]. Separation and Purification Technology, 2001, 25(1/2/3): 297-306. |
25 | Wang T, Lin E, Peng Y L, et al. Rational design and synthesis of ultramicroporous metal-organic frameworks for gas separation[J]. Coordination Chemistry Reviews, 2020, 423: 213485. |
26 | Freund R, Zaremba O, Arnauts G, et al. The current status of MOF and COF applications[J]. Angewandte Chemie International Edition, 2021, 60(45): 23975-24001. |
27 | Yang L F, Qian S H, Wang X B, et al. Energy-efficient separation alternatives: metal-organic frameworks and membranes for hydrocarbon separation[J]. Chemical Society Reviews, 2020, 49(15): 5359-5406. |
28 | He Y B, Zhou W, Qian G D, et al. Methane storage in metal-organic frameworks[J]. Chemical Society Reviews, 2014, 43(16): 5657-5678. |
29 | Verma G, Ren J Y, Kumar S, et al. New paradigms in porous framework materials for acetylene storage and separation[J]. European Journal of Inorganic Chemistry, 2021, 2021(44): 4498-4507. |
30 | Zhou S, Shekhah O, Ramírez A, et al. Asymmetric pore windows in MOF membranes for natural gas valorization[J]. Nature, 2022, 606: 706-712. |
31 | Chen K J, Madden D G, Mukherjee S, et al. Synergistic sorbent separation for one-step ethylene purification from a four-component mixture[J]. Science, 2019, 366(6462): 241-246. |
32 | Peng Y L, Wang T, Jin C N, et al. Efficient propyne/propadiene separation by microporous crystalline physiadsorbents[J]. Nature Communications, 2021, 12: 5768. |
33 | Liao P Q, Huang N Y, Zhang W X, et al. Controlling guest conformation for efficient purification of butadiene[J]. Science, 2017, 356(6343): 1193-1196. |
34 | Huang X, Jiang S Y, Ma D, et al. Molecular exclusion separation of 1-butene isomers by a robust metal-organic framework under humid conditions[J]. Angewandte Chemie International Edition, 2023, 62(31): e202303671. |
35 | Banerjee D, Simon C M, Elsaidi S K, et al. Xenon gas separation and storage using metal-organic frameworks[J]. Chem, 2018, 4(3): 466-494. |
36 | Niu Z, Fan Z W, Pham T, et al. Self-adjusting metal-organic framework for efficient capture of trace xenon and krypton[J]. Angewandte Chemie International Edition, 2022, 61(11): e202117807. |
37 | Pei J Y, Gu X W, Liang C C, et al. Robust and radiation-resistant hofmann-type metal-organic frameworks for record xenon/krypton separation[J]. Journal of the American Chemical Society, 2022, 144(7): 3200-3209. |
38 | Zheng F, Guo L D, Chen R D, et al. Shell-like xenon nano-traps within angular anion-pillared layered porous materials for boosting Xe/Kr separation[J]. Angewandte Chemie International Edition, 2022, 61(20): e202116686. |
39 | Wang S M, Mu X T, Liu H R, et al. Pore-structure control in metal-organic frameworks (MOFs) for capture of the greenhouse gas SF6 with record separation[J]. Angewandte Chemie International Edition, 2022, 61(33): 2207066. |
40 | Xia W, Yang Y S, Sheng L Z, et al. Temperature-dependent molecular sieving of fluorinated propane/propylene mixtures by a flexible-robust metal-organic framework[J]. Science Advances, 2024, 10(3): eadj6473. |
41 | Wang H, Li J. Microporous metal-organic frameworks for adsorptive separation of C5—C6 alkane isomers[J]. Accounts of Chemical Research, 2019, 52(7): 1968-1978. |
42 | Zheng F, Guo L D, Chen R D, et al. Temperature-swing molecular exclusion separation of hexane isomers in robust MOFs with double-accessible open metal sites[J]. Chemical Engineering Journal, 2023, 460: 141743. |
43 | Lal B, Idrees K B, Xie H M, et al. Pore aperture control toward size-exclusion-based hydrocarbon separations[J]. Angewandte Chemie International Edition, 2023, 62(16): e202219053. |
44 | Guo F A, Wang J, Chen C L, et al. Linker vacancy engineering of a robust ftw-type Zr-MOF for hexane isomers separation[J]. Angewandte Chemie International Edition, 2023, 62(24): e202303527. |
45 | Han Y, Chen Y L, Ma Y J, et al. Control of the pore chemistry in metal-organic frameworks for efficient adsorption of benzene and separation of benzene/cyclohexane[J]. Chem, 2023, 9(3): 739-754. |
46 | Li W B, Wu Y, Zhong X F, et al. Fluorescence enhancement of a metal-organic framework for ultra-efficient detection of trace benzene vapor[J]. Angewandte Chemie International Edition, 2023, 62(24): e202303500. |
47 | He T, Kong X J, Bian Z X, et al. Trace removal of benzene vapour using double-walled metal-dipyrazolate frameworks[J]. Nature Materials, 2022, 21: 689-695. |
48 | Cui X L, Niu Z, Shan C, et al. Efficient separation of xylene isomers by a guest-responsive metal-organic framework with rotational anionic sites[J]. Nature Communications, 2020, 11: 5456. |
49 | Li X L, Wang J H, Bai N N, et al. Refinement of pore size at sub-angstrom precision in robust metal-organic frameworks for separation of xylenes[J]. Nature Communications, 2020, 11: 4280. |
50 | Idrees K B, Li Z, Xie H M, et al. Separation of aromatic hydrocarbons in porous materials[J]. Journal of the American Chemical Society, 2022, 144(27): 12212-12218. |
51 | Li L Y, Guo L D, Olson D H, et al. Discrimination of xylene isomers in a stacked coordination polymer[J]. Science, 2022, 377(6603): 335-339. |
52 | Yu L, Zhang J, Ullah S, et al. Separating xylene isomers with a calcium metal-organic framework[J]. Angewandte Chemie International Edition, 2023, 62(41): e202310672. |
53 | Zhou J Y, Ke T, Song Y F, et al. Highly efficient separation of C8 aromatic isomers by rationally designed nonaromatic metal-organic frameworks[J]. Journal of the American Chemical Society, 2022, 144(46): 21417-21424. |
54 | Gu Z Y, Jiang D Q, Wang H F, et al. Adsorption and separation of xylene isomers and ethylbenzene on two Zn-terephthalate metal-organic frameworks[J]. Journal of Physical Chemistry C, 2010, 114(1): 311-316. |
55 | Nicolau M P M, Bárcia P S, Gallegos J M, et al. Single- and multicomponent vapor-phase adsorption of xylene isomers and ethylbenzene in a microporous metal-organic framework[J]. Journal of Physical Chemistry C, 2009, 113(30): 13173-13179. |
56 | Huang L. Synthesis, morphology control, and properties of porous metal-organic coordination polymers[J]. Microporous and Mesoporous Materials, 2003, 58(2): 105-114. |
57 | Finsy V, Verelst H, Alaerts L, et al. Pore-filling-dependent selectivity effects in the vapor-phase separation of xylene isomers on the metal-organic framework MIL-47[J]. Journal of the American Chemical Society, 2008, 130(22): 7110-7118. |
58 | Alaerts L, Kirschhock C E A, Maes M, et al. Selective adsorption and separation of xylene isomers and ethylbenzene with the microporous vanadium(Ⅳ) terephthalate MIL-47[J]. Angewandte Chemie International Edition, 2007, 46(23): 4293-4297. |
59 | Finsy V, Kirschhock C E A, Vedts G, et al. Framework breathing in the vapour-phase adsorption and separation of xylene isomers with the metal-organic framework MIL-53[J]. Chemistry, 2009, 15(31): 7724-7731. |
60 | Alaerts L, Maes M, Giebeler L, et al. Selective adsorption and separation of ortho-substituted alkylaromatics with the microporous aluminum terephthalate MIL-53[J]. Journal of the American Chemical Society, 2008, 130(43): 14170-14178. |
61 | Zhang K, Lively R P, Zhang C, et al. Exploring the framework hydrophobicity and flexibility of ZIF-8: from biofuel recovery to hydrocarbon separations[J]. Journal of Physical Chemistry Letters, 2013, 4(21): 3618-3622. |
62 | Peralta D, Chaplais G, Paillaud J L, et al. The separation of xylene isomers by ZIF-8: a demonstration of the extraordinary flexibility of the ZIF-8 framework[J]. Microporous and Mesoporous Materials, 2013, 173: 1-5. |
63 | Polyukhov D M, Poryvaev A S, Sukhikh A S, et al. Fine-tuning window apertures in ZIF-8/67 frameworks by metal ions and temperature for high-efficiency molecular sieving of xylenes[J]. ACS Applied Materials & Interfaces, 2021, 13(34): 40830-40836. |
64 | van der Perre S, Van Assche T, Bozbiyik B, et al. Adsorptive characterization of the ZIF-68 metal-organic framework: a complex structure with amphiphilic properties[J]. Langmuir, 2014, 30(28): 8416-8424. |
65 | Gonzalez M I, Kapelewski M T, Bloch E D, et al. Separation of xylene isomers through multiple metal site interactions in metal-organic frameworks[J]. Journal of the American Chemical Society, 2018, 140(9): 3412-3422. |
66 | Peralta D, Barthelet K, Pérez-Pellitero J, et al. Adsorption and separation of xylene isomers: CPO-27-Ni vs HKUST-1 vs NaY[J]. Journal of Physical Chemistry C, 2012, 116(41): 21844-21855. |
67 | Mukherjee S, Joarder B, Manna B, et al. Framework-flexibility driven selective sorption of p-xylene over other isomers by a dynamic metal-organic framework[J]. Scientific Reports, 2014, 4: 5761. |
68 | Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1477-1504. |
69 | Webster C E, Drago R S, Zerner M C. Molecular dimensions for adsorptives[J]. Journal of the American Chemical Society, 1998, 120(22): 5509-5516. |
70 | Gu Z Y, Yan X P. Metal-organic framework MIL-101 for high-resolution gas-chromatographic separation of xylene isomers and ethylbenzene[J]. Angewandte Chemie International Edition, 2010, 49(8): 1477-1480. |
71 | Jin Z, Zhao H Y, Zhao X J, et al. A novel microporous MOF with the capability of selective adsorption of xylenes[J]. Chemical Communications, 2010, 46(45): 8612-8614. |
72 | Lannoeye J, Van de Voorde B, Bozbiyik B, et al. An aliphatic copper metal-organic framework as versatile shape selective adsorbent in liquid phase separations[J]. Microporous Mesoporous Mater, 2016, 226: 292-298. |
73 | Li X F, Bian H, Huang W Q, et al. A review on anion-pillared metal-organic frameworks (APMOFs) and their composites with the balance of adsorption capacity and separation selectivity for efficient gas separation[J]. Coordination Chemistry Reviews, 2022, 470: 214714. |
74 | Yang L P, Liu H B, Xing J C, et al. Separation of xylene isomers in the anion-pillared square grid material SIFSIX-1-Cu[J]. Chemistry, 2021, 27(20): 6187-6190. |
75 | Hou X Y, Huang X Y, Li X Y, et al. A green aluminum-based metal organic framework outperforms its polymorph with MIL-53 type topology in o-xylene purification[J]. Separation and Purification Technology, 2023, 322: 124311. |
76 | Wang S Q, Mukherjee S, Patyk-Kaźmierczak E, et al. Highly selective, high-capacity separation of o-xylene from C8 aromatics by a switching adsorbent layered material[J]. Angewandte Chemie International Edition, 2019, 58(20): 6630-6634. |
77 | Kumar N, Wang S Q, Mukherjee S, et al. Crystal engineering of a rectangular sql coordination network to enable xylenes selectivity over ethylbenzene[J]. Chemical Science, 2020, 11(26): 6889-6895. |
78 | Wang P, Kajiwara T, Otake K I, et al. Xylene recognition in flexible porous coordination polymer by guest-dependent structural transition[J]. ACS Applied Materials & Interfaces, 2021, 13(44): 52144-52151. |
79 | Sapianik A A, Dudko E R, Kovalenko K A, et al. Metal-organic frameworks for highly selective separation of xylene isomers and single-crystal X-ray study of aromatic guest-host inclusion compounds[J]. ACS Applied Materials & Interfaces, 2021, 13(12): 14768-14777. |
80 | Warren J E, Perkins C G, Jelfs K E, et al. Shape selectivity by guest-driven restructuring of a porous material[J]. Angewandte Chemie International Edition, 2014, 53(18): 4592-4596. |
81 | Ye Z M, Zhang X F, Liu D X, et al. A gating ultramicroporous metal-organic framework showing high adsorption selectivity, capacity and rate for xylene separation[J]. Science China Chemistry, 2022, 65(8): 1552-1558. |
82 | Lyndon R, Bacsa J, Jue M L, et al. Direct structural evidence of molecular packing effects of xylene isomers adsorbed in BIF-20[J]. Crystal Growth & Design, 2018, 18(5): 2890-2898. |
83 | Torres-Knoop A, Krishna R, Dubbeldam D. Separating xylene isomers by commensurate stacking of p-xylene within channels of MAF-X8[J]. Angewandte Chemie International Edition, 2014, 53(30): 7774-7778. |
84 | Vermoortele F, Maes M, Moghadam P Z, et al. p-Xylene-selective metal-organic frameworks: a case of topology-directed selectivity[J]. Journal of the American Chemical Society, 2011, 133(46): 18526-18529. |
85 | Holcroft J M, Hartlieb K J, Moghadam P Z, et al. Carbohydrate-mediated purification of petrochemicals[J]. Journal of the American Chemical Society, 2015, 137(17): 5706-5719. |
86 | Yoon J W, Lee J S, Piburn G W, et al. Highly selective adsorption of p-xylene over other C8 aromatic hydrocarbons by Co-CUK-1: a combined experimental and theoretical assessment[J]. Dalton Transactions, 2017, 46(46): 16096-16101. |
87 | Saccoccia B, Bohnsack A M, Waggoner N W, et al. Separation of p-divinylbenzene by selective room-temperature adsorption inside Mg-CUK-1 prepared by aqueous microwave synthesis[J]. Angewandte Chemie International Edition, 2015, 54(18): 5394-5398. |
88 | Gao B, Tan L L, Song N, et al. A high-yield synthesis of [m]biphenyl-extended pillar[n]arenes for an efficient selective inclusion of toluene and m-xylene in the solid state[J]. Chemical Communications, 2016, 52(34): 5804-5807. |
89 | Jie K C, Liu M, Zhou Y J, et al. Near-ideal xylene selectivity in adaptive molecular pillar[n]arene crystals[J]. Journal of the American Chemical Society, 2018, 140(22): 6921-6930. |
90 | Dey A, Chand S, Ghosh M, et al. Molecular recognition and adsorptive separation of m-xylene by trianglimine crystals[J]. Chemical Communications, 2021, 57(72): 9124-9127. |
91 | He D L, Clowes R, Little M A, et al. Creating porosity in a trianglimine macrocycle by heterochiral pairing[J]. Chemical Communications, 2021, 57(50): 6141-6144. |
92 | Sun N, Wang S Q, Zou R Q, et al. Benchmark selectivity p-xylene separation by a non-porous molecular solid through liquid or vapor extraction[J]. Chemical Science, 2019, 10(38): 8850-8854. |
93 | Lusi M, Barbour L J. Solid-vapor sorption of xylenes: prioritized selectivity as a means of separating all three isomers using a single substrate[J]. Angewandte Chemie International Edition, 2012, 51(16): 3928-3931. |
94 | du Plessis M, Nikolayenko V I, Barbour L J. Record-setting selectivity for p-xylene by an intrinsically porous zero-dimensional metallocycle[J]. Journal of the American Chemical Society, 2020, 142(10): 4529-4533. |
95 | Pivovar A M, Holman K T, Ward M D. Shape-selective separation of molecular isomers with tunable hydrogen-bonded host frameworks[J]. Chemistry of Materials, 2001, 13(9): 3018-3031. |
96 | Ma L, Xie Y, Khoo R S H, et al. An adaptive hydrogen-bonded organic framework for the exclusive recognition of p-xylene[J]. Chemistry, 2022, 28(11): e202104269. |
[1] | Tianyi LI, Yutai WU, Yongsheng WANG, Jiarui GU, Yiheng SONG, Fengcheng YANG, Guangping HAO. Advances in light isotopes separation and catalytic labeling [J]. CIESC Journal, 2024, 75(4): 1284-1301. |
[2] | Jun LI, Liang ZHAO, Jinsen GAO, Chunming XU. Research progress of extraction technology in processing different distillate by grade and composition [J]. CIESC Journal, 2024, 75(4): 1065-1080. |
[3] | Tiantian LYU, Min YUAN, Jiang WANG, Meizhen GAO, Jiahui YANG, Hong XU, Jinxiang DONG, Qi SHI. Preparation of ZTIF based hydrophobic micro-mesoporous carbon and their adsorption and separation performance of 5-hydroxymethylfurfural [J]. CIESC Journal, 2024, 75(4): 1642-1654. |
[4] | Binyu MO, Yaxin ZHANG, Guozhen LIU, Gongping LIU, Wanqin JIN. Recent progress of metal-organic framework membranes for mono/divalent ions separation [J]. CIESC Journal, 2024, 75(4): 1183-1197. |
[5] | Yuan MENG, Shan NI, Yafeng LIU, Wenjie WANG, Yue ZHAO, Yudan ZHU, Liangrong YANG. Adsorption properties of functionalized porous carbon nitride materials for uranium [J]. CIESC Journal, 2024, 75(4): 1616-1629. |
[6] | Kaibo ZHANG, Jiaxin SHEN, Yuxia LI, Peng TAN, Xiaoqin LIU, Linbing SUN. Controllable construction of Cu(Ⅰ) in Y zeolite for adsorptive separation of ethylene/ethane [J]. CIESC Journal, 2024, 75(4): 1607-1615. |
[7] | Zijia ZHANG, Xinyue QIU, Xiang SUN, Zhibin LUO, Haizhong LUO, Gaohong HE, Xuehua RUAN. Progress in molecular structure design for polyimide membrane materials to enhance CO2 permeation ability [J]. CIESC Journal, 2024, 75(4): 1137-1152. |
[8] | Yiru WEN, Jia FU, Dahuan LIU. Advances in machine learning-based materials research for MOFs: energy gas adsorption separation [J]. CIESC Journal, 2024, 75(4): 1370-1381. |
[9] | Xiao DONG, Zhishan BAI, Xiaoyong YANG, Wei YIN, Ningpu LIU, Qifan YU. Research and industrial application of coupled impurity removal technology in CHPPO process oxidation liquids [J]. CIESC Journal, 2024, 75(4): 1630-1641. |
[10] | Lei XING, Shuai GUAN, Minghu JIANG, Lixin ZHAO, Meng CAI, Hailong LIU, Dehai CHEN. Study on structure optimization and performance of downhole gas-liquid hydrocyclone under high gas-liquid ratio [J]. CIESC Journal, 2024, 75(3): 900-913. |
[11] | Baofeng WANG, Shugao WANG, Fangqin CHENG. Progress in preparation and CO2 adsorption properties of solid waste-based sulfur-doped porous carbon materials [J]. CIESC Journal, 2024, 75(2): 395-411. |
[12] | Youjia WANG, Liang ZHAO, Jinsen GAO, Chunming XU. Research progress on separation technology of diesel hydrocarbon components [J]. CIESC Journal, 2024, 75(1): 20-32. |
[13] | Xiangjun MENG, Yingxi HUA, Changjin ZHANG, Chi ZHANG, Linrui YANG, Ruoxi YANG, Jianyi LIU, Chunjian XU. Preparation and purification of 6N electronic-grade deuterium gas [J]. CIESC Journal, 2024, 75(1): 377-390. |
[14] | Kexin YAN, Hongtao JIANG, Weiqun GAO, Xiaohui GUO, Weizhen SUN, Ling ZHAO. Recent advances in the removal of trace boron and phosphorus impurities from electronic grade silicon raw materials [J]. CIESC Journal, 2024, 75(1): 83-94. |
[15] | Yuanshuai QI, Wenchao PENG, Yang LI, Fengbao ZHANG, Xiaobin FAN. Research progress on electrochemical desalination mechanisms and related studies [J]. CIESC Journal, 2024, 75(1): 171-189. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||