CIESC Journal ›› 2025, Vol. 76 ›› Issue (5): 2294-2303.DOI: 10.11949/0438-1157.20241217
• Separation engineering • Previous Articles Next Articles
Xin LIU1,3(
), Haoren ZHENG1,3, Qiang CHEN1, Jingyi DING3, Kang HUANG1,3(
), Zhi XU2(
)
Received:2024-10-31
Revised:2024-12-24
Online:2025-06-13
Published:2025-05-25
Contact:
Kang HUANG, Zhi XU
刘鑫1,3(
), 郑皓仁1,3, 陈强1, 丁静怡3, 黄康1,3(
), 徐至2(
)
通讯作者:
黄康,徐至
作者简介:刘鑫(1999—),男,博士研究生,liuxin@njtech.edu.cn
基金资助:CLC Number:
Xin LIU, Haoren ZHENG, Qiang CHEN, Jingyi DING, Kang HUANG, Zhi XU. Cellulose nanocrystals-doped hybrid matrix membranes for vanadium flow battery[J]. CIESC Journal, 2025, 76(5): 2294-2303.
刘鑫, 郑皓仁, 陈强, 丁静怡, 黄康, 徐至. 全钒液流电池用纤维素纳米晶掺杂混合基质膜[J]. 化工学报, 2025, 76(5): 2294-2303.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 SPEEK/CNC hybrid matrix membrane: (a) source of CNC; (b) molecular formula of CNC and SPEEK; (c) SPEEK/CNC membrane sieving and mass transfer mechanisms
Fig.2 Topography characterization of CNC: (a) powder of CNC; (b) SEM image of CNC powder; (c) DMSO dispersion for CNC; (d) SEM image of CNC dispersion; (e) TEM image of CNC dispersion; (f) AFM image of CNC dispersion
Fig.3 Basic characterization of CNC: (a) XPS spectrum of CNC-S 2p; (b) Zeta potential map of CNC; (c) hydrodynamic diameter diagram of CNC; (d) TGA of CNC; (e) XRD spectrum of CNC; (f) FTIR of CNC
Fig.7 Data analysis of different CNC doping amounts: (a) XRD spectra of different CNC doping amount; (b) TGA curves for different CNC doping levels; (c) FTIR spectra of different CNC doping amounts
Fig.12 Cycling stability of SPEEK membrane along with S/CNC-3 membrane at 120 mA·cm-2: (a) cycling stability at 120 mA·cm-2; (b) discharge capacity retention
| 1 | Hunter C A, Penev M M, Reznicek E P, et al. Techno-economic analysis of long-duration energy storage and flexible power generation technologies to support high-variable renewable energy grids[J]. Joule, 2021, 5(8): 2077-2101. |
| 2 | Shan R, Reagan J, Castellanos S, et al. Evaluating emerging long-duration energy storage technologies[J]. Renewable and Sustainable Energy Reviews, 2022, 159: 112240. |
| 3 | Ouyang T C, Zhang M L, Qin P J, et al. Flow battery energy storage system for microgrid peak shaving based on predictive control algorithm[J]. Applied Energy, 2024, 356: 122448. |
| 4 | Kim J Q, So S, Kim H T, et al. Highly ordered ultrathin perfluorinated sulfonic acid ionomer membranes for vanadium redox flow battery[J]. ACS Energy Letters, 2021, 6(1): 184-192. |
| 5 | Kim D K, Yoon S J, Lee J, et al. Parametric study and flow rate optimization of all-vanadium redox flow batteries[J]. Applied Energy, 2018, 228: 891-901. |
| 6 | Zhang D Z, Huang K, Xia Y S, et al. Two-dimensional MFI-type zeolite flow battery membranes[J]. Angewandte Chemie International Edition, 2023, 62(43): e202310945. |
| 7 | Wu Y L, Wang Y X, Zhang D Z, et al. Crystallizing self-standing covalent organic framework membranes for ultrafast proton transport in flow batteries[J]. Angewandte Chemie International Edition, 2023, 62(50): e202313571. |
| 8 | 杜若晗, 逄博, 王宁, 等. 连续共价有机框架筛分复合膜及全钒电池性能[J]. 化工学报, 2022, 73(9): 4163-4172. |
| Du R H, Pang B, Wang N, et al. Continuous covalent organic framework composite membrane with size-sieving effect for vanadium flow battery[J]. CIESC Journal, 2022, 73(9): 4163-4172. | |
| 9 | Khataee A, Nederstedt H, Jannasch P, et al. Poly(arylene alkylene)s functionalized with perfluorosulfonic acid groups as proton exchange membranes for vanadium redox flow batteries[J]. Journal of Membrane Science, 2023, 671: 121390. |
| 10 | Dos Santos F B, McMichael P S, Whitbeck A, et al. Proton exchange membranes from sulfonated lignin nanocomposites for redox flow battery applications[J]. Small, 2024, 20(24): e2309459. |
| 11 | Wang R J, Yang L P, Li J, et al. High rate lithium slurry flow batteries enabled by an ionic exchange Nafion composite membrane incorporated with LLZTO fillers[J]. Nano Energy, 2023, 108: 108174. |
| 12 | Yang X B, Zhao L, Goh K, et al. A phosphotungstic acid coupled silica-Nafion composite membrane with significantly enhanced ion selectivity for vanadium redox flow battery[J]. Journal of Energy Chemistry, 2020, 41: 177-184. |
| 13 | Zhang D H, Yu W J, Zhang Y, et al. Reconstructing proton channels via Zr-MOFs realizes highly ion-selective and proton-conductive SPEEK-based hybrid membrane for vanadium flow battery[J]. Journal of Energy Chemistry, 2022, 75: 448-456. |
| 14 | Zhu H L. SPEEK scaling UP[J]. Joule, 2022, 6(4): 718-720. |
| 15 | Qiao L, Zhang H M, Lu W J, et al. Advanced porous membranes with slit-like selective layer for flow battery[J]. Nano Energy, 2018, 54: 73-81. |
| 16 | Lau W J, Ismail A F. Theoretical studies on the morphological and electrical properties of blended PES/SPEEK nanofiltration membranes using different sulfonation degree of SPEEK[J]. Journal of Membrane Science, 2009, 334(1/2): 30-42. |
| 17 | Chang N N, Yin Y B, Yue M, et al. A cost-effective mixed matrix polyethylene porous membrane for long-cycle high power density alkaline zinc-based flow batteries[J]. Advanced Functional Materials, 2019, 29(29): 1901674. |
| 18 | Wang Z G, Wang D, Zhang S X, et al. Interfacial design of mixed matrix membranes for improved gas separation performance[J]. Advanced Materials, 2016, 28(17): 3399-3405. |
| 19 | Zhang B, Dai X Y, Wei N N, et al. Fabrication of oriented MOF-based mixed matrix membrane via ion-induced synchronous synthesis[J]. Small, 2024, 20(11): e2305688. |
| 20 | Kim J, Fu Q, Xie K, et al. CO2 separation using surface-functionalized SiO2 nanoparticles incorporated ultra-thin film composite mixed matrix membranes for post-combustion carbon capture[J]. Journal of Membrane Science, 2016, 515: 54-62. |
| 21 | Ye J Y, Zhao X L, Ma Y L, et al. Hybrid membranes dispersed with superhydrophilic TiO2 nanotubes toward ultra-stable and high-performance vanadium redox flow batteries[J]. Advanced Energy Materials, 2020, 10(22): 1904041. |
| 22 | Pang R Z, Li X, Li J S, et al. Preparation and characterization of ZrO2/PES hybrid ultrafiltration membrane with uniform ZrO2 nanoparticles[J]. Desalination, 2014, 332(1): 60-66. |
| 23 | Yang Z Q, Wu Z J, Peh S B, et al. Mixed-matrix membranes containing porous materials for gas separation: from metal-organic frameworks to discrete molecular cages[J]. Engineering, 2023, 23: 40-55. |
| 24 | Li C, Jiang Y N, Wu Z H, et al. Mixed matrix membrane with penetrating subnanochannels: a versatile nanofluidic platform for selective metal ion conduction[J]. Angewandte Chemie International Edition, 2023, 62(2): e202215906. |
| 25 | Xie K, Fu Q, Webley P A, et al. MOF scaffold for a high-performance mixed-matrix membrane[J]. Angewandte Chemie International Edition, 2018, 57(28): 8597-8602. |
| 26 | Zhang Y H, Ma L, Lv Y Q, et al. Facile manufacture of COF-based mixed matrix membranes for efficient CO2 separation[J]. Chemical Engineering Journal, 2022, 430: 133001. |
| 27 | Qi A H, Li C E, Evans J D, et al. Self-sorting of interfacial compatibility in MOF-based mixed matrix membranes[J]. Angewandte Chemie International Edition, 2024, 63(24): e202400474. |
| 28 | Qian Q H, Wu A X, Chi W S, et al. Mixed-matrix membranes formed from imide-functionalized UiO-66-NH2 for improved interfacial compatibility[J]. ACS Applied Materials & Interfaces, 2019, 11(34): 31257-31269. |
| 29 | Wang Z H, Chen Z, Zheng Z D, et al. Nanocellulose-based membranes for highly efficient molecular separation[J]. Chemical Engineering Journal, 2023, 451: 138711. |
| 30 | Wang S, Li T, Chen C J, et al. Transparent, anisotropic biofilm with aligned bacterial cellulose nanofibers[J]. Advanced Functional Materials, 2018, 28(24): 1707491. |
| 31 | Melikoğlu A Y, Bilek S E, Cesur S. Optimum alkaline treatment parameters for the extraction of cellulose and production of cellulose nanocrystals from apple pomace[J]. Carbohydrate Polymers, 2019, 215: 330-337. |
| 32 | 王雨西, 高焕秋, 代笛菲, 等. 不同硫酸浓度水解制备纤维素纳米晶及其稳定Pickering乳液研究[J]. 食品与发酵工业, 2024, 50(9): 132-138. |
| Wang Y X, Gao H Q, Dai D F, et al. Preparation of cellulose nanocrystals by hydrolysis with different sulfuric acid concentrations and their stabilized Pickering emulsions[J]. Food and Fermentation Industries, 2024, 50(9): 132-138. | |
| 33 | Mukhopadhyay A, Cheng Z, Natan A, et al. Stable and highly ion-selective membrane made from cellulose nanocrystals for aqueous redox flow batteries[J]. Nano Letters, 2019, 19(12): 8979-8989. |
| 34 | Gu J, Catchmark J M, Kaiser E Q, et al. Quantification of cellulose nanowhiskers sulfate e sterification levels[J]. Carbohydrate Polymers, 2013, 92(2): 1809-1816. |
| 35 | Beh E S, De Porcellinis D, Gracia R L, et al. A neutral pH aqueous organic-organometallic redox flow battery with extremely high capacity retention[J]. ACS Energy Letters, 2017, 2(3): 639-644. |
| [1] | Xiangfei DING, Xiaolin QIU, Xicheng ZHU, Jiawei ZHANG, Jinhua CHEN. Preparation and properties of pH-responsive gas permeable CNC/PBAT composite membranes [J]. CIESC Journal, 2024, 75(3): 1040-1051. |
| [2] | Chao HU, Yuming DONG, Wei ZHANG, Hongling ZHANG, Peng ZHOU, Hongbin XU. Preparation of high-concentration positive electrolyte of vanadium redox flow battery by activating vanadium pentoxide with highly concentrated sulfuric acid [J]. CIESC Journal, 2023, 74(S1): 338-345. |
| [3] | ZHU Le, QI Liang, YAO Kejian, XIE Xiaofeng. Mass transfer of positive vanadium ions across cell membrane under magnetoelectric composite field [J]. CIESC Journal, 2016, 67(S1): 148-158. |
| [4] | LI Yan, XU Tongwen. Development of ion exchange membrane for all-vanadium redox flow battery [J]. CIESC Journal, 2015, 66(9): 3296-3304. |
| [5] | LI Minghua, FAN Yongsheng, WANG Baoguo. Model of charge/discharge operation for all-vanadium redox flow battery [J]. CIESC Journal, 2014, 65(1): 313-318. |
| [6] | WANG Wenpin, WANG Shubo, XIE Xiaofeng, LV Yafei, HUANG Mianyan. Nonfluorinated anion exchange membranes based on imidazolium salts for all-vanadium redox flow battery [J]. CIESC Journal, 2013, 64(S1): 203-208. |
| [7] | QING Geletu, SONG Shiqiang, FAN Yongsheng, WANG Baoguo. Ion diffusion behaviors through porous proton conductive membrane [J]. CIESC Journal, 2013, 64(2): 689-695. |
| [8] | XU Bo1,QI Liang1,YAO Kejian1,XIE Xiaofeng2. Investigation and simulation on electrolyte distribution for all-vanadium redox flow battery [J]. Chemical Industry and Engineering Progree, 2013, 32(02): 313-319. |
| [9] | ZHAO Chengming, XIE Xiaofeng. Calculation of solvation free energies of VO2+/VO2+ ions in aqueous solution by using Cluster-Continuum model [J]. CIESC Journal, 2012, 63(S2): 132-135. |
| [10] | XU Bo, QI Liang, YAO Kejian, LIU Ran, YANG Chun, XIE Xiaofeng. VO2+ permeation behavior for vanadium redox flow battery [J]. CIESC Journal, 2012, 63(S2): 126-131. |
| [11] | YANG Chun,WANG Shubo,XIE Xiaofeng,WANG Jinhai,MAO Zongqiang. Performance influence of hydroxyl radical on graphite felt electrode used in all vanadium redox flow battery [J]. CIESC Journal, 2012, 63(S1): 188-193. |
| [12] | LIU Subiao1,2,YANG Chun2,LIU Ran1,XIE Xiaofeng2,ZHOU Tao1. Sodium ligninsulfonate as electrolyte additive for vanadium redox flow battery [J]. CIESC Journal, 2012, 63(S1): 208-213. |
| [13] | PAN Jianxin1,2,LIAO Lingzhi1,XIE Xiaofeng2,WANG Shubo2,WANG Jinhai2,SHANG Yuming2,ZHOU Tao1. On-line resistance measurement for all vanadium redox flow battery by transient-boundary voltage method [J]. Chemical Industry and Engineering Progree, 2012, 31(09): 1946-1949. |
| [14] | CHEN Xiao’e,CUI Xumei,WANG Jun. Study on the chemical synthesis and the performance of V(Ⅲ)-V(Ⅳ) electrolyte [J]. Chemical Industry and Engineering Progree, 2012, 31(06): 1330-1332. |
| [15] | LI Mengnan,XIE Xiaofeng,YANG Chun,WANG Jinhai,WANG Shubo,SHANG Yuming. Characteristics of BMIMBF4 as anode electrolyte additive for vanadium redox flow battery [J]. CIESC Journal, 2011, 62(S2): 135-139. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||