CIESC Journal ›› 2016, Vol. 67 ›› Issue (S1): 148-158.doi: 10.11949/j.issn.0438-1157.20160711

Previous Articles     Next Articles

Mass transfer of positive vanadium ions across cell membrane under magnetoelectric composite field

ZHU Le1, QI Liang1, YAO Kejian1, XIE Xiaofeng2   

  1. 1 State Key Laboratory Breed Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China;
    2 Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
  • Received:2016-05-24 Revised:2016-05-29 Online:2016-08-31 Published:2016-08-31
  • Supported by:

    supported by the National Natural Science Foundation of China for the Youth (21306170).

Abstract:

The mass transfer of positive vanadium ions across Nafion117 membrane within the magnetic field, electric field, and other additives complex field were studied. Diffusion coefficients were estimated based on experimental data based on the Darcy's Law. The results show that the forward electric field will increase the permeability of vanadium ions. The permeability within an electric field density was estimated to be 30 V·m-1 which is 2.53 times as large as that without applied electric field. A non-uniform magnetic field can significantly help reduce the permeability of vanadium ions. When the non-uniform magnetic and electric fields are applied simultaneously, the effects of non-uniform magnetic field on the mass transfer are more noteble. A higher concentration of sulfuric acid solution contributes more to reduce the permeability of VOVO2+. Permeability of VOVO2+ are also decreased by mixing in glycerol, ligninsulfonate and other cathode electrolyte additives.

Key words: vanadium redox flow battery, magnetic field, complex field, Darcy’s law, diffusion coefficients

CLC Number: 

  • TM911
[1] BAKER J. New technology and possible advances in energy storage[J]. Energy Policy, 2008, 36(12):4368-4373.
[2] VIJAYAKUMAR M, SARAH D BN, CHENG H, et al. Nuclear magnetic resonance studies on vanadium (Ⅳ) electrolyte solutions for vanadium redox flow battery[J]. Journal of Power Sources, 2010, 195(22):7709-7717.
[3] SKYLLAS-KAZACOS M, RYCHCIK M, ROBINS R G, et al. New all-vanadium redox flow cell[J]. Journal of the Electrochemical Society, 1986, 133(5):1057-1058.
[4] SKYLLAS-KAZACOS M. A Historical Preview of the Vanadium Redox Flow Battery Development at School of Chemical Engineering and Industrial Chemistry[M]. Sydney, Australia:UNSW,2002.
[5] ORIJI G, KATAYAMA Y, MIURA T. Investigation on V(Ⅳ)/V(Ⅴ) species in vanadium redox flow battery[J]. Electrochimica Acta,2004,49(19):3091-3095.
[6] TOKUDA N, FURUYA M, KIKUOKO Y,et al. Development of a redox flow(RF)battery for energy storage[C]//Proceedings of Power Conversion Conference. PCC Qsaka, 2002:1144.
[7] ZHAN P, ZHANG H M, ZHOU H T,et al. Characteristics and performance of l0 kW class all-vanadium redox-flow battery stack[J]. Journal Power Sources, 2006,162(2):1416-1420.
[8] MARIA S K, LEESESN G. Modeling of vanadium ion diffusion across the ion exchange membrane in the vanadium redox battery[J]. Journal of Membrane Science, 2012,399/400(1):43-48.
[9] AO T, JIE B, MARIA S K. Dynamic modeling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery[J]. Journal Power Sources, 2011,196(2):10737-10747.
[10] KIM S, YAN J L, SCHWENZER B, et al.Cycling performance and efficiency of sulfonated poly(sulfone) membrane in vanadium redox flow batteries[J]. Electrochem. Communications, 2010, 12(11):1650-1653.
[11] 孙红, 栾丽华, 吴铁军,等. 质子交换膜中的传质分析[J]. 工程热物理学报, 2012, 33(2):255-258. SUN H, LUAN L H, WU T J, et al. Mass transfer in proton exchange membrane[J]. Journal of Engineering Thermophysics, 2012, 33(2):255-258.
[12] 陈金庆, 吕宏凌, 王保国,等. 全钒液流电池电解液流场结构优化设计[J]. 当代化工, 2011, 40(9):893-895. CHEN J Q, LÜ H L, WANG B G,et al. Study on the process of vanadium ions across membrane based on adsorption-diffusion mechanism[J].Contemporary Chemical Industry, 2011, 40(9):893-895.
[13] WIEDEMANN E, HEINTS A,LICHTEN R N. Transport properties of vanadium ions in cation exchange membranes; determination of diffusion coefficients using a dialysis cell[J]. Journal of Membrane Science, 1998, 141(2):215-221.
[14] 赵成明, 谢晓峰. 用Cluster-Continuum模型计算水溶液中VO2+/VO2+电对溶剂化自由能[J]. 化工学报, 2012, 63(S2):132-135. ZHAO C M, XIE X F. Calculation of solvation free energies of VO2+/VO2+ ions in aqueous solution by using Cluster-Continuum model[J]. CIESC Journal, 2012, 63(S2):132-135.
[15] 王保国. 新能源领域的质子交换膜研究与应用进展[J]. 膜科学与技术, 2010, 30(1):1-8. WANG B G. Review of the development of proton exchange membranes in the renewable energy technology[J]. Membrane Science and Technology, 2010, 30(1):1-8.
[16] 尹海涛, 王保国. 隔膜扩散特性对全钒液流单电池性能的影响[J]. 电池, 2006, 36(1):60-61. YIN H T, WANG B G.Influence of membrane diffusivity on the performance of a single vanadium flow battery[J]. Battery Bimonthly, 2006, 36(1):60-61.
[17] 吕正中, 胡嵩麟, 罗绚丽,等. 质子交换膜对钒氧化还原液流电池性能的影响[J]. 高等学校化学学报, 2007, 28(1):145-148. LÜ Z Z, HU S L, LUO X L, et al. Influence of proton exchange membrane on the performance of vanadium redox flow battery[J]. Chemical Journal of Chinese Universities, 2007, 28(1):145-148.
[18] TENG X G, ZHAO Y T, XI J Y, et al. Nafion/organic silica modified TiO2 composite membrane for vanadium redox flow battery via in situ sol-gel reactions[J]. Journal of Membrane Science, 2009, 341(1/2):149-154.
[19] SUN C X, CHEN J, ZHANG H M, et al. Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery[J]. Journal Power Sources, 2010, 195(3):890-897.
[20] 徐波, 齐亮, 姚克俭,等. 全钒液流电池VO2+离子跨膜渗透行为[J]. 化工学报, 2012, 63(S2):126-131. XU B, QI L, YAO K J, et al. VO2+ permeation behavior for vanadium redox flow battery[J]. CIESC Journal, 2012, 63(S2):126-131.
[21] WIEDEMANN E, HEINTS A,LICHTEN R N. Sorption isotherms of vanadium with H3O+ions in cation exchange membranes[J]. Journal of Membrane Science, 1998, 141(2):207-213.
[22] 毛凌波, 张仁元, 陈晓. 全钒液流电池正极电解液的研究进展[J]. 电池工业, 2007, 12(5):352-356. MAO L B, ZHANG R Y, CHEN X. Research process on the positive electrolyte for all-vanadium redox flow battery[J]. Chinense Battery Industry, 2007,12(5):352-356.
[23] 杨春, 王金海, 谢晓峰,等. 丙三醇对钒液流电池电解液影响的交流阻抗研究[J]. 化工学报, 2011, 62(S1):163-167. YANG C, WANG J H, XIE X F, et al. AC impedance of influence of glycerin on all vanadium redox flow battery anodic electrolyte[J]. CIESC Journal, 2011, 62(S1):163-167.
[24] 刘苏彪, 杨春, 刘然,等. 木质素磺酸钠作为全钒液流电池添加剂的研究[J]. 化工学报, 2012, 63(S1):208-212. LIU S B, YANG C, LIU R, et al. Sodium ligninsulfonate as electrolyte additive for vanadium redox flow battery[J]. CIESC Journal, 2012, 63(S1):208-212.
[25] 尹跃龙, 李小山, 王树博, 等. 复合添加剂对全钒液流电池正极电解液的影响[J]. 化工进展, 2011, 30(S1):767-771. YIN Y L, LI X S, WANG S B, et al. Effect of complex additives on the positive electrolyte for vanadium redox flow battery[J]. Chemical Industry and Engineering Progress, 2011, 30(S1):767-771.
[1] Tianqi TANG, Yurong HE. Effect of magnetic field on the mesoscale structure evolution process in a wet particle fluidized bed [J]. CIESC Journal, 2022, 73(6): 2636-2648.
[2] Feng GAO, Yongchang CHEN, Jinlong ZHAO, Chongfang MA. Influence of magnetic field on jet impingement heat transfer with molten salt [J]. CIESC Journal, 2020, 71(S2): 92-97.
[3] Yaqian WANG, Xiao LU, Bo PENG. Control of magnetic field to luminescence characteristics in (C4H9NH3)2(CH3NH3)Pb2I7 perovskite [J]. CIESC Journal, 2020, 71(6): 2912-2917.
[4] Dongqin LUO, Ning SUN, Qiuhong LI, Pengliang SUI, Qiuyan JIANG, Xiaofei SUI, Aixiang LI. Preparation and modulation of Pickering emulsion stabilized by non-covalent hydrophobic modified nanoparticles [J]. CIESC Journal, 2020, 71(4): 1859-1870.
[5] SONG Lichao,QIN Yan,LI Weizhong. Experimental study of frosting on different wettability surfaces under magnetic field [J]. CIESC Journal, 2020, 71(12): 5521-5529.
[6] Qiu ZHONG,Liping YANG,Ye TAO,Caiyun LUO,Zijun XU,Wenbing WANG. Experimental study on temperature signal difference under high intensity magnetic field [J]. CIESC Journal, 2019, 70(S2): 349-355.
[7] Zichao JIANG, Jianhua FANG, Zeqi JIANG, Xin WANG, Yanhan FENG, Jianhua DING. Tribological properties ofnano-WS2 lubricating oil additives under DC magnetic field [J]. CIESC Journal, 2019, 70(7): 2636-2644.
[8] LUO Zhiqiang, YANG Qingfeng. Effect of rotating magnetic field coupled with water volume on CaCO3 crystallization [J]. CIESC Journal, 2018, 69(7): 3029-3037.
[9] SUN Xuhui, QI Yuan, DONG Shuyu. Copper corrosion inhibition mechanism by combination of 2-mercaptobenzothiazole and magnetic treatment [J]. CIESC Journal, 2018, 69(5): 2120-2126.
[10] SHA Lili, JU Yonglin, ZHANG Hua. Experimental investigation of convective heat transfer coefficient using Fe3O4/water nanofluids under different magnetic field in laminar flow [J]. CIESC Journal, 2018, 69(4): 1349-1356.
[11] MA Rui, FU Taotao, ZHANG Qindan, LIU Cai, ZHU Chunying, MA Youguang. Formation and manipulation of ferrofluid droplets in Y-shaped flow-focusing microchannel [J]. CIESC Journal, 2018, 69(2): 602-610.
[12] CAO Bei, LI Jinxiang, GUAN Xiaohong. Enhancing reactivity of zerovalent iron toward U (Ⅵ) by weak magnetic field [J]. CIESC Journal, 2017, 68(8): 3282-3290.
[13] ZHANG Qi, WU Jiayi, LU Ping, WU Tao, SHAO Jingping, DENG Xiaoyan. CO2 absorption by aqueous ammonia solution with use of external magnetic field [J]. CIESC Journal, 2017, 68(6): 2555-2562.
[14] XIONG Lan, GAO Jianxiang, LIN Gaolin, XIONG Lujing, FAN Yuyi. Anti-scaling experiment and mechanism of constant magnetic field from permanent magnets in water dispenser [J]. CIESC Journal, 2017, 68(1): 264-271.
[15] WANG Jianguo, LI Bin, LIANG Yandong, YIN Zhao, CHEN Si. Detecting the best electromagnetic field intensity in experiment of electromagnetic anti-fouling based on metastable zone [J]. CIESC Journal, 2016, 67(9): 3658-3662.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!