[1] |
BAKER J. New technology and possible advances in energy storage[J]. Energy Policy, 2008, 36(12):4368-4373.
|
[2] |
VIJAYAKUMAR M, SARAH D BN, CHENG H, et al. Nuclear magnetic resonance studies on vanadium (Ⅳ) electrolyte solutions for vanadium redox flow battery[J]. Journal of Power Sources, 2010, 195(22):7709-7717.
|
[3] |
SKYLLAS-KAZACOS M, RYCHCIK M, ROBINS R G, et al. New all-vanadium redox flow cell[J]. Journal of the Electrochemical Society, 1986, 133(5):1057-1058.
|
[4] |
SKYLLAS-KAZACOS M. A Historical Preview of the Vanadium Redox Flow Battery Development at School of Chemical Engineering and Industrial Chemistry[M]. Sydney, Australia:UNSW,2002.
|
[5] |
ORIJI G, KATAYAMA Y, MIURA T. Investigation on V(Ⅳ)/V(Ⅴ) species in vanadium redox flow battery[J]. Electrochimica Acta,2004,49(19):3091-3095.
|
[6] |
TOKUDA N, FURUYA M, KIKUOKO Y,et al. Development of a redox flow(RF)battery for energy storage[C]//Proceedings of Power Conversion Conference. PCC Qsaka, 2002:1144.
|
[7] |
ZHAN P, ZHANG H M, ZHOU H T,et al. Characteristics and performance of l0 kW class all-vanadium redox-flow battery stack[J]. Journal Power Sources, 2006,162(2):1416-1420.
|
[8] |
MARIA S K, LEESESN G. Modeling of vanadium ion diffusion across the ion exchange membrane in the vanadium redox battery[J]. Journal of Membrane Science, 2012,399/400(1):43-48.
|
[9] |
AO T, JIE B, MARIA S K. Dynamic modeling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery[J]. Journal Power Sources, 2011,196(2):10737-10747.
|
[10] |
KIM S, YAN J L, SCHWENZER B, et al.Cycling performance and efficiency of sulfonated poly(sulfone) membrane in vanadium redox flow batteries[J]. Electrochem. Communications, 2010, 12(11):1650-1653.
|
[11] |
孙红, 栾丽华, 吴铁军,等. 质子交换膜中的传质分析[J]. 工程热物理学报, 2012, 33(2):255-258. SUN H, LUAN L H, WU T J, et al. Mass transfer in proton exchange membrane[J]. Journal of Engineering Thermophysics, 2012, 33(2):255-258.
|
[12] |
陈金庆, 吕宏凌, 王保国,等. 全钒液流电池电解液流场结构优化设计[J]. 当代化工, 2011, 40(9):893-895. CHEN J Q, LÜ H L, WANG B G,et al. Study on the process of vanadium ions across membrane based on adsorption-diffusion mechanism[J].Contemporary Chemical Industry, 2011, 40(9):893-895.
|
[13] |
WIEDEMANN E, HEINTS A,LICHTEN R N. Transport properties of vanadium ions in cation exchange membranes; determination of diffusion coefficients using a dialysis cell[J]. Journal of Membrane Science, 1998, 141(2):215-221.
|
[14] |
赵成明, 谢晓峰. 用Cluster-Continuum模型计算水溶液中VO2+/VO2+电对溶剂化自由能[J]. 化工学报, 2012, 63(S2):132-135. ZHAO C M, XIE X F. Calculation of solvation free energies of VO2+/VO2+ ions in aqueous solution by using Cluster-Continuum model[J]. CIESC Journal, 2012, 63(S2):132-135.
|
[15] |
王保国. 新能源领域的质子交换膜研究与应用进展[J]. 膜科学与技术, 2010, 30(1):1-8. WANG B G. Review of the development of proton exchange membranes in the renewable energy technology[J]. Membrane Science and Technology, 2010, 30(1):1-8.
|
[16] |
尹海涛, 王保国. 隔膜扩散特性对全钒液流单电池性能的影响[J]. 电池, 2006, 36(1):60-61. YIN H T, WANG B G.Influence of membrane diffusivity on the performance of a single vanadium flow battery[J]. Battery Bimonthly, 2006, 36(1):60-61.
|
[17] |
吕正中, 胡嵩麟, 罗绚丽,等. 质子交换膜对钒氧化还原液流电池性能的影响[J]. 高等学校化学学报, 2007, 28(1):145-148. LÜ Z Z, HU S L, LUO X L, et al. Influence of proton exchange membrane on the performance of vanadium redox flow battery[J]. Chemical Journal of Chinese Universities, 2007, 28(1):145-148.
|
[18] |
TENG X G, ZHAO Y T, XI J Y, et al. Nafion/organic silica modified TiO2 composite membrane for vanadium redox flow battery via in situ sol-gel reactions[J]. Journal of Membrane Science, 2009, 341(1/2):149-154.
|
[19] |
SUN C X, CHEN J, ZHANG H M, et al. Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery[J]. Journal Power Sources, 2010, 195(3):890-897.
|
[20] |
徐波, 齐亮, 姚克俭,等. 全钒液流电池VO2+离子跨膜渗透行为[J]. 化工学报, 2012, 63(S2):126-131. XU B, QI L, YAO K J, et al. VO2+ permeation behavior for vanadium redox flow battery[J]. CIESC Journal, 2012, 63(S2):126-131.
|
[21] |
WIEDEMANN E, HEINTS A,LICHTEN R N. Sorption isotherms of vanadium with H3O+ions in cation exchange membranes[J]. Journal of Membrane Science, 1998, 141(2):207-213.
|
[22] |
毛凌波, 张仁元, 陈晓. 全钒液流电池正极电解液的研究进展[J]. 电池工业, 2007, 12(5):352-356. MAO L B, ZHANG R Y, CHEN X. Research process on the positive electrolyte for all-vanadium redox flow battery[J]. Chinense Battery Industry, 2007,12(5):352-356.
|
[23] |
杨春, 王金海, 谢晓峰,等. 丙三醇对钒液流电池电解液影响的交流阻抗研究[J]. 化工学报, 2011, 62(S1):163-167. YANG C, WANG J H, XIE X F, et al. AC impedance of influence of glycerin on all vanadium redox flow battery anodic electrolyte[J]. CIESC Journal, 2011, 62(S1):163-167.
|
[24] |
刘苏彪, 杨春, 刘然,等. 木质素磺酸钠作为全钒液流电池添加剂的研究[J]. 化工学报, 2012, 63(S1):208-212. LIU S B, YANG C, LIU R, et al. Sodium ligninsulfonate as electrolyte additive for vanadium redox flow battery[J]. CIESC Journal, 2012, 63(S1):208-212.
|
[25] |
尹跃龙, 李小山, 王树博, 等. 复合添加剂对全钒液流电池正极电解液的影响[J]. 化工进展, 2011, 30(S1):767-771. YIN Y L, LI X S, WANG S B, et al. Effect of complex additives on the positive electrolyte for vanadium redox flow battery[J]. Chemical Industry and Engineering Progress, 2011, 30(S1):767-771.
|