CIESC Journal ›› 2025, Vol. 76 ›› Issue (7): 3259-3273.DOI: 10.11949/0438-1157.20241502
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Xiaoyu WANG1(
), Guilong DAI1,2(
), Shukun DENG1, Lingzhu GONG2
Received:2024-12-25
Revised:2025-02-10
Online:2025-08-13
Published:2025-07-25
Contact:
Guilong DAI
通讯作者:
戴贵龙
作者简介:王孝宇(2000—),男,硕士研究生,1476473619@qq.com
基金资助:CLC Number:
Xiaoyu WANG, Guilong DAI, Shukun DENG, Lingzhu GONG. Pore-scale simulation of heat transfer and pressure drop performance in Laguerre-Voronoi open-cell foams[J]. CIESC Journal, 2025, 76(7): 3259-3273.
王孝宇, 戴贵龙, 邓树坤, 龚凌诸. Laguerre-Voronoi开孔泡沫流动-传热综合性能孔隙尺度模拟[J]. 化工学报, 2025, 76(7): 3259-3273.
Add to citation manager EndNote|Ris|BibTeX
| dc/m | ds/dc | ϕO-LV | ϕE-LV | asf, O-LV/m-1 | asf, E-LV/m-1 | dh, O-LV/m | dh, E-LV/m |
|---|---|---|---|---|---|---|---|
| 0.003 | 0.10 | 0.970 | 0.967 | 365.1 | 399.4 | 0.0106 | 0.0097 |
| 0.25 | 0.843 | 0.833 | 710.4 | 796.5 | 0.0047 | 0.0042 | |
| 0.30 | 0.802 | 0.782 | 784.3 | 890.2 | 0.0041 | 0.0035 | |
| 0.36 | 0.736 | 0.704 | 842.1 | 955.4 | 0.0035 | 0.0029 | |
| 0.45 | 0.616 | 0.581 | 903.0 | 1031.1 | 0.0027 | 0.0023 | |
| 0.004 | 0.10 | 0.969 | 0.967 | 302.3 | 333.2 | 0.0128 | 0.0116 |
| 0.25 | 0.839 | 0.808 | 597.1 | 649.2 | 0.0056 | 0.0050 | |
| 0.30 | 0.797 | 0.755 | 670.9 | 727.9 | 0.0048 | 0.0042 | |
| 0.36 | 0.732 | 0.671 | 715.6 | 781.1 | 0.0041 | 0.0034 | |
| 0.45 | 0.614 | 0.538 | 762.0 | 841.3 | 0.0032 | 0.0026 | |
| 0.005 | 0.10 | 0.968 | 0.965 | 246.3 | 274.7 | 0.0157 | 0.0141 |
| 0.25 | 0.838 | 0.807 | 475.1 | 521.3 | 0.0071 | 0.0062 | |
| 0.30 | 0.793 | 0.754 | 524.5 | 588.1 | 0.0060 | 0.0051 | |
| 0.36 | 0.731 | 0.664 | 566.9 | 635.6 | 0.0052 | 0.0042 | |
| 0.45 | 0.617 | 0.529 | 600.0 | 675.1 | 0.0041 | 0.0031 |
Table 1 Structural parameters of the LV foams
| dc/m | ds/dc | ϕO-LV | ϕE-LV | asf, O-LV/m-1 | asf, E-LV/m-1 | dh, O-LV/m | dh, E-LV/m |
|---|---|---|---|---|---|---|---|
| 0.003 | 0.10 | 0.970 | 0.967 | 365.1 | 399.4 | 0.0106 | 0.0097 |
| 0.25 | 0.843 | 0.833 | 710.4 | 796.5 | 0.0047 | 0.0042 | |
| 0.30 | 0.802 | 0.782 | 784.3 | 890.2 | 0.0041 | 0.0035 | |
| 0.36 | 0.736 | 0.704 | 842.1 | 955.4 | 0.0035 | 0.0029 | |
| 0.45 | 0.616 | 0.581 | 903.0 | 1031.1 | 0.0027 | 0.0023 | |
| 0.004 | 0.10 | 0.969 | 0.967 | 302.3 | 333.2 | 0.0128 | 0.0116 |
| 0.25 | 0.839 | 0.808 | 597.1 | 649.2 | 0.0056 | 0.0050 | |
| 0.30 | 0.797 | 0.755 | 670.9 | 727.9 | 0.0048 | 0.0042 | |
| 0.36 | 0.732 | 0.671 | 715.6 | 781.1 | 0.0041 | 0.0034 | |
| 0.45 | 0.614 | 0.538 | 762.0 | 841.3 | 0.0032 | 0.0026 | |
| 0.005 | 0.10 | 0.968 | 0.965 | 246.3 | 274.7 | 0.0157 | 0.0141 |
| 0.25 | 0.838 | 0.807 | 475.1 | 521.3 | 0.0071 | 0.0062 | |
| 0.30 | 0.793 | 0.754 | 524.5 | 588.1 | 0.0060 | 0.0051 | |
| 0.36 | 0.731 | 0.664 | 566.9 | 635.6 | 0.0052 | 0.0042 | |
| 0.45 | 0.617 | 0.529 | 600.0 | 675.1 | 0.0041 | 0.0031 |
| 样品类型 | D/mm | L/mm | ϕ | ds/dc | dc/mm |
|---|---|---|---|---|---|
| E-LV | 25 | 40 | 0.629 | 0.41 | 4.0 |
| O-LV | 25 | 40 | 0.566 | 0.41 | 4.0 |
Table 2 Geometric parameters of experimental samples
| 样品类型 | D/mm | L/mm | ϕ | ds/dc | dc/mm |
|---|---|---|---|---|---|
| E-LV | 25 | 40 | 0.629 | 0.41 | 4.0 |
| O-LV | 25 | 40 | 0.566 | 0.41 | 4.0 |
| 模型 | 经验关联式 | 评价指标 | |
|---|---|---|---|
| R2 | MAPE | ||
| E-LV | 0.99 | 20.6% | |
| 0.98 | 26.5% | ||
| O-LV | 0.99 | 20.4% | |
| 0.98 | 27.0% | ||
Table 3 Empirical correlations and evaluation indicators of the heat transfer and pressure drop
| 模型 | 经验关联式 | 评价指标 | |
|---|---|---|---|
| R2 | MAPE | ||
| E-LV | 0.99 | 20.6% | |
| 0.98 | 26.5% | ||
| O-LV | 0.99 | 20.4% | |
| 0.98 | 27.0% | ||
| [1] | Chowdhury S, Nugraha A S, O'May R, et al. Bimetallic metal-organic framework-derived porous one-dimensional carbon materials for electrochemical sensing of dopamine[J]. Chemical Engineering Journal, 2024, 492: 152124. |
| [2] | Radogna C, Serrano I, Fargas G, et al. Chemical etching optimization of 3D printed α-Al2O3 monoliths to enhance the catalytic applications[J]. Journal of the European Ceramic Society, 2024, 44(12): 7189-7200. |
| [3] | Fan C, Li Y, Xia X L, et al. Pore-level structural optimization of porous foams for enhancing heat transfer and reducing pressure drop simultaneously[J]. International Communications in Heat and Mass Transfer, 2022, 136: 106215. |
| [4] | 赵长颖, 潘智豪, 王倩, 等. 多孔介质的相变和热化学储热性能[J]. 科学通报, 2016, 61(17): 1897-1915. |
| Zhao C Y, Pan Z H, Wang Q, et al. Heat transfer of phase change materials (PCMs) and thermochemical heat storage in porous materials [J]. Chinese Science Bulletin, 2016, 61(17): 1897-1915. | |
| [5] | Arasteh H, Mashayekhi R, Goodarzi M, et al. Heat and fluid flow analysis of metal foam embedded in a double-layered sinusoidal heat sink under local thermal non-equilibrium condition using nanofluid[J]. Journal of Thermal Analysis and Calorimetry, 2019, 138(2): 1461-1476. |
| [6] | Sheikholeslami M, Rezaeianjouybari B, Darzi M, et al. Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study[J]. International Journal of Heat and Mass Transfer, 2019, 141: 974-980. |
| [7] | 郑坤灿, 温治, 王占胜, 等. 前沿领域综述多孔介质强制对流换热研究进展[J]. 物理学报, 2012, 61(1): 532-542. |
| Zheng K C, Wen Z, Wang Z S, et al. Review on forced convection heat transfer in porous media[J]. Acta Physica Sinica, 2012, 61(1): 532-542. | |
| [8] | 张承全, 高军, 吕立鹏, 等. 单一尺寸圆柱颗粒填充床的阻力特性[J]. 化工学报, 2019, 70(11): 4181-4190. |
| Zhang C Q, Gao J, Lyu L P, et al. Resistance characteristics of bed packed with mono-size cylindrical particles[J]. CIESC Journal, 2019, 70(11): 4181-4190. | |
| [9] | Wu Z Y, Caliot C, Flamant G, et al. Numerical simulation of convective heat transfer between air flow and ceramic foams to optimise volumetric solar air receiver performances[J]. International Journal of Heat and Mass Transfer, 2011, 54(7/8): 1527-1537. |
| [10] | Dietrich B. Heat transfer coefficients for solid ceramic sponges—experimental results and correlation[J]. International Journal of Heat and Mass Transfer, 2013, 61: 627-637. |
| [11] | Xia X L, Chen X, Sun C, et al. Experiment on the convective heat transfer from airflow to skeleton in open-cell porous foams[J]. International Journal of Heat and Mass Transfer, 2017, 106: 83-90. |
| [12] | Sun M R, Li M, Hu C Z, et al. Comparison of forced convective heat transfer between pillar and real foam structure under high Reynolds number[J]. Applied Thermal Engineering, 2021, 182: 116130. |
| [13] | Moreira A C, Appoloni C R, Rocha W R D, et al. Determination of the porosity and pore size distribution of SiC ceramic foams by nuclear methodologies[J]. Advances in Applied Ceramics, 2010, 109(7): 416-420. |
| [14] | Ghosh I. Heat-transfer analysis of high porosity open-cell metal foam[J]. Journal of Heat Transfer, 2008, 130(3): 034501. |
| [15] | Sun M R, Hu C Z, Zha L G, et al. Pore-scale simulation of forced convection heat transfer under turbulent conditions in open-cell metal foam[J]. Chemical Engineering Journal, 2020, 389: 124427. |
| [16] | Weaire D, Phelan R. A counter-example to Kelvin's conjecture on minimal surfaces[J]. Philosophical Magazine Letters, 1994, 69(2): 107-110. |
| [17] | Cheng Z L, Xu R N, Jiang P X. Morphology, flow and heat transfer in triply periodic minimal surface based porous structures[J]. International Journal of Heat and Mass Transfer, 2021, 170: 120902. |
| [18] | Nie Z W, Lin Y Y, Tong Q B. Numerical investigation of pressure drop and heat transfer through open cell foams with 3D Laguerre-Voronoi model[J]. International Journal of Heat and Mass Transfer, 2017, 113: 819-839. |
| [19] | Ferenc J S, Néda Z. On the size distribution of Poisson Voronoi cells[J]. Physica A: Statistical Mechanics and its Applications, 2007, 385(2): 518-526. |
| [20] | Zhang P, Karimpour M, Balint D, et al. A controlled Poisson Voronoi tessellation for grain and cohesive boundary generation applied to crystal plasticity analysis[J]. Computational Materials Science, 2012, 64: 84-89. |
| [21] | Nie Z W, Lin Y Y, Tong Q B. Modeling structures of open cell foams[J]. Computational Materials Science, 2017, 131: 160-169. |
| [22] | Paknahad R, Siavashi M, Hosseini M. Pore-scale fluid flow and conjugate heat transfer study in high porosity Voronoi metal foams using multi-relaxation-time regularized lattice Boltzmann (MRT-RLB) method[J]. International Communications in Heat and Mass Transfer, 2023, 141: 106607. |
| [23] | Xu Q, Wu Y B, Chen Y, et al. Unlocking the thermal efficiency of irregular open-cell metal foams: a computational exploration of flow dynamics and heat transfer phenomena[J]. Energies, 2024, 17(6): 1305. |
| [24] | Skibinski J, Cwieka K, Kowalkowski T, et al. The influence of pore size variation on the pressure drop in open-cell foams[J]. Materials & Design, 2015, 87: 650-655. |
| [25] | Inayat A, Klumpp M, Lämmermann M, et al. Development of a new pressure drop correlation for open-cell foams based completely on theoretical grounds: taking into account strut shape and geometric tortuosity[J]. Chemical Engineering Journal, 2016, 287: 704-719. |
| [26] | Dietrich B, Schabel W, Kind M, et al. Pressure drop measurements of ceramic sponges: determining the hydraulic diameter[J]. Chemical Engineering Science, 2009, 64(16): 3633-3640. |
| [27] | Sepehri E, Siavashi M. Pore-scale direct numerical simulation of fluid dynamics, conduction and convection heat transfer in open-cell Voronoi porous foams[J]. International Communications in Heat and Mass Transfer, 2022, 137: 106274. |
| [28] | Khairullin A, Haibullina A, Sinyavin A, et al. Heat transfer in 3D Laguerre-Voronoi open-cell foams under pulsating flow[J]. Energies, 2022, 15(22): 8660. |
| [29] | Cheng L C, Wong S C. Pore-scale numerical simulation and LTNE analysis for fully-developed forced convective heat transfer in packed beds of mono-sized rough spheres covering near-wall and core regions[J]. International Journal of Heat and Mass Transfer, 2023, 208: 124047. |
| [30] | Du S, Li M J, Ren Q L, et al. Pore-scale numerical simulation of fully coupled heat transfer process in porous volumetric solar receiver[J]. Energy, 2017, 140: 1267-1275. |
| [31] | Du S, Tong ZX, Zhang HH, et al. Tomography-based determination of Nusselt number correlation for the porous volumetric solar receiver with different geometrical parameters[J]. Renewable Energy, 2019, 135: 711-718. |
| [32] | Wu Z Y, Caliot C, Bai F W, et al. Experimental and numerical studies of the pressure drop in ceramic foams for volumetric solar receiver applications[J]. Applied Energy, 2010, 87(2): 504-513. |
| [33] | Yang C, Zhao Y J, Kang L M, et al. High-strength silicon brass manufactured by selective laser melting[J]. Materials Letters, 2018, 210: 169-172. |
| [34] | An J T, Chen C J, Zhang M. Effect of CaCO3 content change on the production of closed-cell aluminum foam by selective laser melting[J]. Optics & Laser Technology, 2021, 141: 107097. |
| [35] | Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. |
| [36] | Dybbs A, Edwards R V. A new look at porous media fluid mechanics: darcy to turbulent[M]//Fundamentals of Transport Phenomena in Porous Media. Dordrecht: Springer Netherlands, 1984: 199-256. |
| [37] | Strąk K, Piasecka M. The applicability of heat transfer correlations to flows in minichannels and new correlation for subcooled flow boiling[J]. International Journal of Heat and Mass Transfer, 2020, 158: 119933. |
| [1] | Haolei DUAN, Haoyuan CHEN, Kunfeng LIANG, Lin WANG, Bin CHEN, Yong CAO, Chenguang ZHANG, Shuopeng LI, Dengyu ZHU, Yaru HE, Dapeng YANG. Performance analysis and comprehensive evaluation of thermal management system schemes with low GWP refrigerants [J]. CIESC Journal, 2025, 76(S1): 54-61. |
| [2] | Songyuan GUO, Xiaoqing ZHOU, Wubing MIAO, Bin WANG, Rui ZHUAN, Qingtai CAO, Chengcheng CHEN, Guang YANG, Jingyi WU. Numerical study on characteristics of pressurized discharge in liquid oxygen tank equipped with porous plate in the ascent period of rocket [J]. CIESC Journal, 2025, 76(S1): 62-74. |
| [3] | Xianchao REN, Yaxiu GU, Shaobin DUAN, Wenzhu JIA, Hanlin LI. Experimental study on heat and mass transfer performance of elliptical tube-fin evaporative condenser [J]. CIESC Journal, 2025, 76(S1): 75-83. |
| [4] | Junpeng WANG, Jiaqi FENG, Enbo ZHANG, Bofeng BAI. Study on flow and cavitation characteristic in zigzag and array labyrinth valve core structures [J]. CIESC Journal, 2025, 76(S1): 93-105. |
| [5] | Linhui YUAN, Yu WANG. Heat dissipation performance of single server immersion jet liquid cooling system [J]. CIESC Journal, 2025, 76(S1): 160-169. |
| [6] | Zixiang ZHAO, Zhongdi DUAN, Haoran SUN, Hongxiang XUE. Numerical modelling of water hammer induced by two phase flow with large temperature difference [J]. CIESC Journal, 2025, 76(S1): 170-180. |
| [7] | Bo HUANG, Hao HUANG, Wen WANG, Longkun HE. Analysis of temperature field of membrane liquid cargo in a LNG carrier [J]. CIESC Journal, 2025, 76(S1): 195-204. |
| [8] | Siyuan WANG, Guoqiang LIU, Tong XIONG, Gang YAN. Characteristics of non-uniform wind velocity distribution in window air conditioner axial fans and their impact on optimizing condenser circuit optimization [J]. CIESC Journal, 2025, 76(S1): 205-216. |
| [9] | Qingtai CAO, Songyuan GUO, Jianqiang LI, Zan JIANG, Bin WANG, Rui ZHUAN, Jingyi WU, Guang YANG. Numerical study on influence of perforated plate on retention performance of liquid oxygen tank under negative gravity [J]. CIESC Journal, 2025, 76(S1): 217-229. |
| [10] | Yunlong SUN, Xiaoxiao XU, Yongfang HUANG, Jichao GUO, Weiwei CHEN. Diabatic visualization of CO2 flow boiling in a horizontal smooth tube [J]. CIESC Journal, 2025, 76(S1): 230-236. |
| [11] |
Jichao GUO, Xiaoxiao XU, Yunlong SUN.
Airflow simulation and optimization based on |
| [12] | Jiuchun SUN, Yunlong SANG, Haitao WANG, Hao JIA, Yan ZHU. Study on influence of jet flow on slurry transport characteristics in slurry chamber of shield tunneling machines [J]. CIESC Journal, 2025, 76(S1): 246-257. |
| [13] | Junlong KONG, Yang BI, Yao ZHAO, Yanjun DAI. Simulation experiment on direct cooling thermal management system for energy storage batteries [J]. CIESC Journal, 2025, 76(S1): 289-296. |
| [14] | Zihang WU, Zhenyuan XU, Jinfang YOU, Quanwen PAN, Ruzhu WANG. Cooling system for deep well drilling equipment based on adsorption cold storage technology [J]. CIESC Journal, 2025, 76(S1): 309-317. |
| [15] | Hongxin YU, Ningbo WANG, Yanhua GUO, Shuangquan SHAO. Numerical investigation on the flow and heat transfer characteristics of plate heat exchanger in dynamic ice storage system [J]. CIESC Journal, 2025, 76(S1): 106-113. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||