CIESC Journal ›› 2025, Vol. 76 ›› Issue (8): 4108-4118.DOI: 10.11949/0438-1157.20250150
• Intelligent process engineering • Previous Articles Next Articles
Shichang LIU1(
), Yibai LI1, Jing WANG1,2(
), Yongzhong LIU1,2(
)
Received:2025-02-18
Revised:2025-04-17
Online:2025-09-17
Published:2025-08-25
Contact:
Jing WANG, Yongzhong LIU
刘世昌1(
), 李一白1, 王靖1,2(
), 刘永忠1,2(
)
通讯作者:
王靖,刘永忠
作者简介:刘世昌(2000—),男,硕士研究生,dcc626@stu.xjtu.edu.cn
基金资助:CLC Number:
Shichang LIU, Yibai LI, Jing WANG, Yongzhong LIU. Modular design and optimization of hydrogen-driven electrochemical CO2 capture systems[J]. CIESC Journal, 2025, 76(8): 4108-4118.
刘世昌, 李一白, 王靖, 刘永忠. 氢气驱动电化学捕碳系统的模块化设计与优化[J]. 化工学报, 2025, 76(8): 4108-4118.
Add to citation manager EndNote|Ris|BibTeX
| 性能 | RMSE | R2 | 拟合范围 | |||
|---|---|---|---|---|---|---|
| Model A | Model B | Model A | Model B | Model A | Model B | |
| 除碳率 | 2.07% | 3.95% | 0.9706 | 0.9607 | 0~1 | 0~1 |
| CO2通量/( | 0.34% | 0.61% | 0.9968 | 0.9905 | 0~0.4 | 0~0.4 |
| 电子效率 | 1.23% | 3.12% | 0.9847 | 0.9730 | 0~1 | 0~1 |
Table 1 Validation of the model A and B
| 性能 | RMSE | R2 | 拟合范围 | |||
|---|---|---|---|---|---|---|
| Model A | Model B | Model A | Model B | Model A | Model B | |
| 除碳率 | 2.07% | 3.95% | 0.9706 | 0.9607 | 0~1 | 0~1 |
| CO2通量/( | 0.34% | 0.61% | 0.9968 | 0.9905 | 0~0.4 | 0~0.4 |
| 电子效率 | 1.23% | 3.12% | 0.9847 | 0.9730 | 0~1 | 0~1 |
| 性能 | Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5 | Mode 6 |
|---|---|---|---|---|---|---|
| 出口CO2浓度/% | 0.14 0.032 | 0.081 | 0.14 0.0055 0.0055 | 0.081 0.081 0.0085 | 0.14 0.032 0.0010 | 0.022 |
| 除碳率 | 0.52 0.78 | 0.73 0.73 | 0.52 0.96 0.96 | 0.73 0.73 0.90 | 0.52 0.78 0.97 | 0.93 0.93 0.93 |
| CO2通量/( | 0.22 0.16 | 0.15 0.15 | 0.22 0.10 0.10 | 0.15 0.15 0.10 | 0.22 0.16 0.058 | 0.13 0.13 0.13 |
| 电子效率 | 0.67 0.47 | 0.50 0.50 | 0.67 0.31 0.31 | 0.50 0.50 0.31 | 0.67 0.47 0.17 | 0.40 0.40 0.40 |
| 总氢消耗/(mg/h) | 15.42 15.58 | 14.34 14.34 | 15.42 14.70 14.70 | 14.34 14.34 15.29 | 15.42 15.58 11.84 | 15.26 15.26 15.26 |
| 单位CO2耗氢/( | 0.040 | 0.045 | 0.053 | 0.052 | 0.049 | 0.057 |
Table 2 Comparison of optimization results under series and parallel structures of HECCS
| 性能 | Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5 | Mode 6 |
|---|---|---|---|---|---|---|
| 出口CO2浓度/% | 0.14 0.032 | 0.081 | 0.14 0.0055 0.0055 | 0.081 0.081 0.0085 | 0.14 0.032 0.0010 | 0.022 |
| 除碳率 | 0.52 0.78 | 0.73 0.73 | 0.52 0.96 0.96 | 0.73 0.73 0.90 | 0.52 0.78 0.97 | 0.93 0.93 0.93 |
| CO2通量/( | 0.22 0.16 | 0.15 0.15 | 0.22 0.10 0.10 | 0.15 0.15 0.10 | 0.22 0.16 0.058 | 0.13 0.13 0.13 |
| 电子效率 | 0.67 0.47 | 0.50 0.50 | 0.67 0.31 0.31 | 0.50 0.50 0.31 | 0.67 0.47 0.17 | 0.40 0.40 0.40 |
| 总氢消耗/(mg/h) | 15.42 15.58 | 14.34 14.34 | 15.42 14.70 14.70 | 14.34 14.34 15.29 | 15.42 15.58 11.84 | 15.26 15.26 15.26 |
| 单位CO2耗氢/( | 0.040 | 0.045 | 0.053 | 0.052 | 0.049 | 0.057 |
| 场景 | 级数 | 操作参数 | 出口CO2浓度/% | 平均电子效率 | 总耗氢量/(g/h) | |
|---|---|---|---|---|---|---|
| 电流密度/(mA/cm2) | 温度/℃ | |||||
| S1 | 1 | 24.8 | 60 | 0.12 | 0.62 | 45.83 |
| 2 | 10.7/10.0 | 60/60 | 0.12 | 0.74 | 38.21 | |
| S2 | 2 | 17.7/14.8 | 60/60 | 0.20 | 0.78 | 36.17 |
| 3 | 10.0/10.2/10.0 | 60/60/60 | 0.20 | 0.85 | 33.60 | |
Table 3 Optimal operating parameters and hydrogen consumption in typical scenarios
| 场景 | 级数 | 操作参数 | 出口CO2浓度/% | 平均电子效率 | 总耗氢量/(g/h) | |
|---|---|---|---|---|---|---|
| 电流密度/(mA/cm2) | 温度/℃ | |||||
| S1 | 1 | 24.8 | 60 | 0.12 | 0.62 | 45.83 |
| 2 | 10.7/10.0 | 60/60 | 0.12 | 0.74 | 38.21 | |
| S2 | 2 | 17.7/14.8 | 60/60 | 0.20 | 0.78 | 36.17 |
| 3 | 10.0/10.2/10.0 | 60/60/60 | 0.20 | 0.85 | 33.60 | |
| 场景 | 级数 | 电流密度/(mA/cm2) | 末级出口CO2浓度/% | 投资成本/元 | 操作成本/元 | 总成本/元 | 标准化成本/(元/ |
|---|---|---|---|---|---|---|---|
| S1 | 1 | 24.8 | 0.12 | 1780.71 | 14050.75 | 15831.46 | 1446.51 |
| 2 | 10.7/10.0 | 0.12 | 3561.43 | 11711.87 | 15273.30 | 1393.40 | |
| 3 | 10.0/10.0/10.0 | 0.053 | 5342.14 | 17355.62 | 22697.76 | 1508.25 | |
| 4 | 10.0/10.0/10.0/10.0 | 0.0072 | 7123.57 | 23295.12 | 30418.69 | 1708.96 | |
| S2 | 2 | 17.7/14.8 | 0.20 | 2140.71 | 11099.38 | 13240.09 | 1207.33 |
| 3 | 10.0/10.2/10.0 | 0.20 | 3210.71 | 10297.87 | 13508.58 | 1233.41 | |
| 4 | 10.0/10.0/10.0/10.0 | 0.12 | 4281.43 | 13632.51 | 17913.94 | 1288.70 | |
| 5 | 10.0/10.0/10.0/10.0/10.0 | 0.049 | 5351.43 | 17262.87 | 22614.30 | 1371.60 |
Table 4 Economics of HECCS under different stages in Scenario 1 and Scenario 2
| 场景 | 级数 | 电流密度/(mA/cm2) | 末级出口CO2浓度/% | 投资成本/元 | 操作成本/元 | 总成本/元 | 标准化成本/(元/ |
|---|---|---|---|---|---|---|---|
| S1 | 1 | 24.8 | 0.12 | 1780.71 | 14050.75 | 15831.46 | 1446.51 |
| 2 | 10.7/10.0 | 0.12 | 3561.43 | 11711.87 | 15273.30 | 1393.40 | |
| 3 | 10.0/10.0/10.0 | 0.053 | 5342.14 | 17355.62 | 22697.76 | 1508.25 | |
| 4 | 10.0/10.0/10.0/10.0 | 0.0072 | 7123.57 | 23295.12 | 30418.69 | 1708.96 | |
| S2 | 2 | 17.7/14.8 | 0.20 | 2140.71 | 11099.38 | 13240.09 | 1207.33 |
| 3 | 10.0/10.2/10.0 | 0.20 | 3210.71 | 10297.87 | 13508.58 | 1233.41 | |
| 4 | 10.0/10.0/10.0/10.0 | 0.12 | 4281.43 | 13632.51 | 17913.94 | 1288.70 | |
| 5 | 10.0/10.0/10.0/10.0/10.0 | 0.049 | 5351.43 | 17262.87 | 22614.30 | 1371.60 |
| [1] | Huang P, Fu J L, Qiu D Y, et al. Experimental and kinetic study on the cyclic removal of low concentration CO2 by amine adsorbents in confined spaces[J]. Process Safety and Environmental Protection, 2023, 180: 417-427. |
| [2] | 李俊华, 焦桂萍, 邓辉, 等. 潜艇大气环境控制关键技术研究现状与展望[J]. 中国舰船研究, 2022, 17(5): 116-124. |
| Li J H, Jiao G P, Deng H, et al. Development and prospects of key technology for submarine atmospheric environment control[J]. Chinese Journal of Ship Research, 2022, 17(5): 116-124. | |
| [3] | 徐新宏, 江璐, 方晶晶, 等. AIP潜艇长航期间舱室环境中空气污染物分析[J]. 舰船科学技术, 2019, 41(21): 94-99. |
| Xu X H, Jiang L, Fang J J, et al. Analysis of air pollutants in an air independent propulsion submarine[J]. Ship Science and Technology, 2019, 41(21): 94-99. | |
| [4] | Georgescu M R, Meslem A, Nastase I. Accumulation and spatial distribution of CO2 in the astronaut's crew quarters on the International Space Station[J]. Building and Environment, 2020, 185: 107278. |
| [5] | Zhang Z J, Jin T, Wu H W, et al. Experimental investigation on environmental control of a 50-person mine refuge chamber[J]. Building and Environment, 2022, 210: 108667. |
| [6] | Jacobson T A, Kler J S, Hernke M T, et al. Direct human health risks of increased atmospheric carbon dioxide[J]. Nature Sustainability, 2019, 2: 691-701. |
| [7] | 王钰, 乔江波, 李灿, 等. 核潜艇舱室一体化空气再生系统技术设想[J]. 舰船科学技术, 2022, 44(1): 78-81. |
| Wang Y, Qiao J B, Li C, et al. The technical concept of integrated air regeneration system for nuclear submarine[J]. Ship Science and Technology, 2022, 44(1): 78-81. | |
| [8] | Bisotti F, Hoff K A, Mathisen A, et al. Direct air capture (DAC) deployment: a review of the industrial deployment[J]. Chemical Engineering Science, 2024, 283: 119416. |
| [9] | Sodiq A, Abdullatif Y, Aissa B, et al. A review on progress made in direct air capture of CO2 [J]. Environmental Technology & Innovation, 2023, 29: 102991. |
| [10] | Bui M, Adjiman C S, Bardow A, et al. Carbon capture and storage (CCS): the way forward[J]. Energy & Environmental Science, 2018, 11(5): 1062-1176. |
| [11] | Brethomé F M, Williams N J, Seipp C A, et al. Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power[J]. Nature Energy, 2018, 3: 553-559. |
| [12] | Lee J W, Ahn H, Kim S, et al. Low-concentration CO2 capture system with liquid-like adsorbent based on monoethanolamine for low energy consumption[J]. Journal of Cleaner Production, 2023, 390: 136141. |
| [13] | Küng L, Aeschlimann S, Charalambous C, et al. A roadmap for achieving scalable, safe, and low-cost direct air carbon capture and storage[J]. Energy & Environmental Science, 2023, 16(10): 4280-4304. |
| [14] | 赵俊德, 周爱国, 陈彦霖, 等. 吸附法CO2直接空气捕集技术能耗现状[J]. 化工学报, 2025, 76(4): 1375-1390. |
| Zhao J D, Zhou A G, Chen Y L, et al. Energy consumption of adsorption CO2 direct air capture[J]. CIESC Journal, 2025, 76(4): 1375-1390. | |
| [15] | Garcia J A, Villen-Guzman M, Rodriguez-Maroto J M, et al. Technical analysis of CO2 capture pathways and technologies[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108470. |
| [16] | Baek H M. Possibility of military service-regeneration of LiOH for submarines and improvement in CO2 scrubbing performance of LiOH canisters[J]. Journal of Advanced Marine Engineering and Technology, 2022, 46(3): 115-121. |
| [17] | Panda D, Kulkarni V, Singh S K. Evaluation of amine-based solid adsorbents for direct air capture: a critical review[J]. Reaction Chemistry & Engineering, 2023, 8(1): 10-40. |
| [18] | An K J, Li K, Yang C M, et al. A comprehensive review on regeneration strategies for direct air capture[J]. Journal of CO2 Utilization, 2023, 76: 102587. |
| [19] | Bouaboula H, Chaouki J, Belmabkhout Y, et al. Comparative review of direct air capture technologies: from technical, commercial, economic, and environmental aspects[J]. Chemical Engineering Journal, 2024, 484: 149411. |
| [20] | Zito A M, Clarke L E, Barlow J M, et al. Electrochemical carbon dioxide capture and concentration[J]. Chemical Reviews, 2023, 123(13): 8069-8098. |
| [21] | Fasihi M, Efimova O, Breyer C. Techno-economic assessment of CO2 direct air capture plants[J]. Journal of Cleaner Production, 2019, 224: 957-980. |
| [22] | Li Y, Yuan Y P, Li C F, et al. Human responses to high air temperature, relative humidity and carbon dioxide concentration in underground refuge chamber[J]. Building and Environment, 2018, 131: 53-62. |
| [23] | Du Y, Gai W M, Jin L Z. A novel and green CO2 adsorbent developed with high adsorption properties in a coal mine refuge chamber[J]. Journal of Cleaner Production, 2018, 176: 216-229. |
| [24] | Matz S, Setzler B P, Weiss C M, et al. Demonstration of electrochemically-driven CO2 separation using hydroxide exchange membranes[J]. Journal of the Electrochemical Society, 2021, 168(1): 014501. |
| [25] | Shi L, Zhao Y, Matz S, et al. A shorted membrane electrochemical cell powered by hydrogen to remove CO2 from the air feed of hydroxide exchange membrane fuel cells[J]. Nature Energy, 2022, 7: 238-247. |
| [26] | Rahimi M, Khurram A, Hatton T A, et al. Electrochemical carbon capture processes for mitigation of CO2 emissions[J]. Chemical Society Reviews, 2022, 51(20): 8676-8695. |
| [27] | Matz S, Shi L, Zhao Y, et al. Hydrogen-powered electrochemically-driven CO2 removal from air containing 400 to 5000 ppm CO2 [J]. Journal of the Electrochemical Society, 2022, 169(7): 073503. |
| [28] | Sharifian R, Wagterveld R M, Digdaya I A, et al. Electrochemical carbon dioxide capture to close the carbon cycle[J]. Energy & Environmental Science, 2021, 14(2): 781-814. |
| [29] | Gubler L. Wire-free electrochemical CO2 scrubbing[J]. Nature Energy, 2022, 7: 216-217. |
| [30] | Abbasi R, Setzler B P, Yan Y S. Material and system development needs for widespread deployment of hydroxide exchange membrane fuel cells in light-duty vehicles[J]. Energy & Environmental Science, 2023, 16(10): 4404-4422. |
| [31] | 彭文波, 张诗, 李志印, 等. 回收液氧冷量冻结清除二氧化碳实现AIP潜艇节能增效[J]. 中国舰船研究, 2024, 19(5): 231-237. |
| Peng W B, Zhang S, Li Z Y, et al. Recycle cold energy of liquid oxygen to clear carbon dioxide for AIP submarine[J]. Chinese Journal of Ship Research, 2024, 19(5): 231-237. | |
| [32] | Tang Y, Li Y M. Comparative analysis of the levelized cost of hydrogen production from fossil energy and renewable energy in China[J]. Energy for Sustainable Development, 2024, 83: 101588. |
| [1] | Jianbin PENG, Ming LI, Junlong XIE, Jianye CHEN. Numerical investigation of liquid hydrogen leakage and explosion overpressure at liquid hydrogen receiving terminal [J]. CIESC Journal, 2025, 76(S1): 453-461. |
| [2] | Hao DING, Lin WANG, Hao LIU. Comparative study on mixing rules of vapor-liquid equilibrium for R290/R245fa [J]. CIESC Journal, 2025, 76(S1): 9-16. |
| [3] | Yifan SHI, Gang KE, Hao CHEN, Xiaosheng HUANG, Fang YE, Chengjiao LI, Hang GUO. Simulation of temperature control in large-scale high and low temperature environmental laboratory [J]. CIESC Journal, 2025, 76(S1): 268-280. |
| [4] | Ting HE, Kai ZHANG, Wensheng LIN, Liqiong CHEN, Jiafu CHEN. Research on integrated process of cryogenic CO2 removal under supercritical pressure and liquefaction for biogas [J]. CIESC Journal, 2025, 76(S1): 418-425. |
| [5] | Xinquan SHA, Ran HU, Lei DING, Zhenhua JIANG, Yinong WU. Development and testing of an independent two-stage valved linear compressor for space applications [J]. CIESC Journal, 2025, 76(S1): 114-122. |
| [6] | Bing LIAO, Xinyu ZHU, Qianqian HUANG, Wen XU, Mengyao KOU, Na GUO. Performance and mechanism of enhanced Fenton system by hydroxylamine hydrochloride for removal of 2, 4-DCP under near-neutral conditions [J]. CIESC Journal, 2025, 76(8): 4273-4283. |
| [7] | Ke LI, Haolin XIE, Jian WEN. Multi-objective genetic algorithm optimization for thermal insulation performance of liquid hydrogen tank with multiple vapor-cooled shields [J]. CIESC Journal, 2025, 76(8): 4217-4227. |
| [8] | Zheng GAO, Hui WANG, Zhiguo QU. Data-driven high-throughput screening of anion-pillared metal-organic frameworks for hydrogen storage [J]. CIESC Journal, 2025, 76(8): 4259-4272. |
| [9] | Yuntao ZHOU, Lifeng CUI, Jie ZHANG, Fuhong YU, Xingang LI, Ye TIAN. Ga2O3 modified CuCeO catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2025, 76(8): 4042-4051. |
| [10] | Yitong ZHOU, Mingxi ZHOU, Ruochen LIU, Shuang YE, Weiguang HUANG. Technical and economic analysis on hydrogen based direct reduction steelmaking co-driven by photovoltaic and power grid [J]. CIESC Journal, 2025, 76(8): 4318-4330. |
| [11] | Xiayu FAN, Jianchen SUN, Keying LI, Xinya YAO, Hui SHANG. Machine learning drives system optimization of liquid organic hydrogen storage technology [J]. CIESC Journal, 2025, 76(8): 3805-3821. |
| [12] | Ning YANG, Haonan LI, Xiao LIN, Stella GEORGIADOU, Wen-Feng LIN. Application of plastic-derived carbon@CoMoO4 composites as an efficient electrocatalyst for hydrogen evolution reaction in water electrolysis [J]. CIESC Journal, 2025, 76(8): 4081-4094. |
| [13] | Yaqing HE, Weiqing WANG, Yingtian CHI, Jiarong LI, Haiyun WANG, Xinyan ZHANG, Bowen LIU. Optimization analysis of 3D modelling of SOEC stacks taking into account inhomogeneities [J]. CIESC Journal, 2025, 76(8): 4129-4144. |
| [14] | Jianhai LIU, Lei WANG, Zhaojin LU, Zhishan BAI, Pingyu ZHANG. Research on performance of electrolyzer coupled with electrochemical and multiphase flow model [J]. CIESC Journal, 2025, 76(8): 3885-3893. |
| [15] | Yufeng WANG, Xiaoxue LUO, Hongliang FAN, Baijing WU, Cunpu LI, Zidong WEI. Green organic electrosynthesis coupled with water electrolysis to produce hydrogen—overview of electrode interface regulation strategies [J]. CIESC Journal, 2025, 76(8): 3753-3771. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||