CIESC Journal ›› 2025, Vol. 76 ›› Issue (8): 4095-4107.DOI: 10.11949/0438-1157.20250093
• Separation engineering • Previous Articles Next Articles
Huiqin ZHANG1(
), Hongjun ZHAO2, Zhengjun FU3, Li ZHUANG4, Kai DONG5, Tianzhi JIA1(
), Xueli CAO2(
), Shipeng SUN1,2
Received:2025-01-22
Revised:2025-03-10
Online:2025-09-17
Published:2025-08-25
Contact:
Tianzhi JIA, Xueli CAO
张荟钦1(
), 赵泓竣2, 付正军3, 庄力4, 董凯5, 贾添智1(
), 曹雪丽2(
), 孙世鹏1,2
通讯作者:
贾添智,曹雪丽
作者简介:张荟钦(1984—),男,博士,zhanghuiqin@jsfmtic.com
基金资助:CLC Number:
Huiqin ZHANG, Hongjun ZHAO, Zhengjun FU, Li ZHUANG, Kai DONG, Tianzhi JIA, Xueli CAO, Shipeng SUN. Application of nanofiltration membrane in concentration of ionic rare earth leach solution[J]. CIESC Journal, 2025, 76(8): 4095-4107.
张荟钦, 赵泓竣, 付正军, 庄力, 董凯, 贾添智, 曹雪丽, 孙世鹏. 纳滤膜在离子型稀土浸出液提浓中的应用研究[J]. 化工学报, 2025, 76(8): 4095-4107.
Add to citation manager EndNote|Ris|BibTeX
| 离子 | 离子浓度/ (mg/L) |
|---|---|
| Ca2+ | 158.6 |
| Mg2+ | 1106 |
| Ce3+ | 3.415 |
| La3+ | 56.92 |
Table 1 The main ionic components of the actual rare earth leaching solution
| 离子 | 离子浓度/ (mg/L) |
|---|---|
| Ca2+ | 158.6 |
| Mg2+ | 1106 |
| Ce3+ | 3.415 |
| La3+ | 56.92 |
| 离子 | MNF | MNF-Acid | Duracid | TW-30 | |
|---|---|---|---|---|---|
| Ca2+ | 实验组/(10-2 mg/L) | 4.35 | 5.10 | 3.01 | 6.00 |
| 浸泡组/(10-2 mg/L) | 低于检测限 | ||||
| La3+ | 实验组/(10-2 mg/L) | 0.14 | 0.15 | 0.11 | 0.23 |
| 浸泡组/(10-2 mg/L) | 低于检测限 | ||||
Table 2 Residual ion concentration on the membrane surface
| 离子 | MNF | MNF-Acid | Duracid | TW-30 | |
|---|---|---|---|---|---|
| Ca2+ | 实验组/(10-2 mg/L) | 4.35 | 5.10 | 3.01 | 6.00 |
| 浸泡组/(10-2 mg/L) | 低于检测限 | ||||
| La3+ | 实验组/(10-2 mg/L) | 0.14 | 0.15 | 0.11 | 0.23 |
| 浸泡组/(10-2 mg/L) | 低于检测限 | ||||
Fig.7 The normalized flux changes of Duracid during the concentration process of simulated rare earth leaching solutions with different concentrations
| 项目 | 浓度/(g/L) | 饱和溶解度/(g/L) | |||
|---|---|---|---|---|---|
| Mg2+ | MgSO4 | La3+ | Ca2+ | CaSO4 | |
| pH=5.8 | 1.4 | 7 | 0.4 | 0.51 | 1.73 |
| pH=3 | 0.54 | 1.84 | |||
| pH=1 | 0.82 | 2.79 | |||
| 1%(质量分数)H2SO4 | 0.66 | 2.24 | |||
| pH=5.8 | 1.4 | 7 | 0.4 | 0.51 | 1.73 |
| 2 | 10 | 0.48 | 1.63 | ||
| 2.8 | 14 | 0.46 | 1.56 | ||
| pH=1 | 1.4 | 7 | 0.05 | 0.58 | 1.97 |
| 0.2 | 0.73 | 2.48 | |||
| 0.4 | 0.82 | 2.79 | |||
Table 3 Solubility of CaSO4 under different conditions
| 项目 | 浓度/(g/L) | 饱和溶解度/(g/L) | |||
|---|---|---|---|---|---|
| Mg2+ | MgSO4 | La3+ | Ca2+ | CaSO4 | |
| pH=5.8 | 1.4 | 7 | 0.4 | 0.51 | 1.73 |
| pH=3 | 0.54 | 1.84 | |||
| pH=1 | 0.82 | 2.79 | |||
| 1%(质量分数)H2SO4 | 0.66 | 2.24 | |||
| pH=5.8 | 1.4 | 7 | 0.4 | 0.51 | 1.73 |
| 2 | 10 | 0.48 | 1.63 | ||
| 2.8 | 14 | 0.46 | 1.56 | ||
| pH=1 | 1.4 | 7 | 0.05 | 0.58 | 1.97 |
| 0.2 | 0.73 | 2.48 | |||
| 0.4 | 0.82 | 2.79 | |||
| pH | Hermia模型拟合精度 | ||
|---|---|---|---|
| 完全孔堵塞 | 中间孔堵塞 | 标准孔堵塞 | |
| 5.8 | 0.9169 | 0.8806 | 0.9472 |
| 3 | 0.9779 | 0.9702 | 0.9360 |
| 1 | 0.9648 | 0.9640 | 0.9284 |
Table 4 The fitting results of Hermia model for membrane fouling process under different pH conditions
| pH | Hermia模型拟合精度 | ||
|---|---|---|---|
| 完全孔堵塞 | 中间孔堵塞 | 标准孔堵塞 | |
| 5.8 | 0.9169 | 0.8806 | 0.9472 |
| 3 | 0.9779 | 0.9702 | 0.9360 |
| 1 | 0.9648 | 0.9640 | 0.9284 |
Fig.10 The performance changes of MNF-Acid and Duracid membranes during the concentration process of rare earth leaching solution under the condition of pH=1
| pH | 浓度/(g/L) | 饱和溶解度/(g/L) | |||
|---|---|---|---|---|---|
| Mg2+ | MgSO4 | La3+ | Ca2+ | CaSO4 | |
| 5.8 | 1.4 | 7 | 0.4 | 0.51 | 1.73 |
| 5.8 | 1.75 | 8.75 | 0.5 | 0.50 | 1.7 |
| 5.8 | 2.1 | 10.5 | 0.6 | 0.48 | 1.63 |
| 5.8 | 2 | 10 | 0.57 | 0.50 | 1.7 |
| 5.8 | 2.8 | 14 | 0.8 | 0.49 | 1.67 |
| 3 | 1.4 | 7 | 0.4 | 0.54 | 1.84 |
| 3 | 2 | 10 | 0.57 | 0.51 | 1.73 |
| 3 | 2.8 | 14 | 0.8 | 0.5 | 1.7 |
| 1 | 1.4 | 7 | 0.4 | 0.82 | 2.79 |
| 1 | 2 | 10 | 0.57 | 0.75 | 2.55 |
| 1 | 2.8 | 14 | 0.8 | 0.75 | 2.55 |
Table 5 Solubility of CaSO4 under different recovery rates
| pH | 浓度/(g/L) | 饱和溶解度/(g/L) | |||
|---|---|---|---|---|---|
| Mg2+ | MgSO4 | La3+ | Ca2+ | CaSO4 | |
| 5.8 | 1.4 | 7 | 0.4 | 0.51 | 1.73 |
| 5.8 | 1.75 | 8.75 | 0.5 | 0.50 | 1.7 |
| 5.8 | 2.1 | 10.5 | 0.6 | 0.48 | 1.63 |
| 5.8 | 2 | 10 | 0.57 | 0.50 | 1.7 |
| 5.8 | 2.8 | 14 | 0.8 | 0.49 | 1.67 |
| 3 | 1.4 | 7 | 0.4 | 0.54 | 1.84 |
| 3 | 2 | 10 | 0.57 | 0.51 | 1.73 |
| 3 | 2.8 | 14 | 0.8 | 0.5 | 1.7 |
| 1 | 1.4 | 7 | 0.4 | 0.82 | 2.79 |
| 1 | 2 | 10 | 0.57 | 0.75 | 2.55 |
| 1 | 2.8 | 14 | 0.8 | 0.75 | 2.55 |
Fig.11 The performance changes of MNF-Acid membrane during the concentration process of rare earth leaching solution under different pressure conditions
| 压力/bar | Hermia模型拟合精度 | ||
|---|---|---|---|
| 完全孔堵塞 | 中间孔堵塞 | 标准孔堵塞 | |
| 4 | 0.9423 | 0.9336 | 0.9464 |
| 6 | 0.9648 | 0.9640 | 0.9284 |
| 8 | 0.9601 | 0.9488 | 0.9554 |
Table 6 The performance changes of MNF-Acid membrane during the concentration process of rare earth leaching solution under different pressure conditions
| 压力/bar | Hermia模型拟合精度 | ||
|---|---|---|---|
| 完全孔堵塞 | 中间孔堵塞 | 标准孔堵塞 | |
| 4 | 0.9423 | 0.9336 | 0.9464 |
| 6 | 0.9648 | 0.9640 | 0.9284 |
| 8 | 0.9601 | 0.9488 | 0.9554 |
| 流量/(L/h) | Hermia模型拟合精度 | ||
|---|---|---|---|
| 完全孔堵塞 | 中间孔堵塞 | 标准孔堵塞 | |
| 30 | 不适用 | 0.9154 | 0.9893 |
| 60 | 0.9864 | 0.9681 | 0.9740 |
| 90 | 0.9626 | 0.9562 | 0.7371 |
Table 7 The performance changes of MNF-Acid membrane during the concentration process of rare earth leaching solution under different feed flow rate
| 流量/(L/h) | Hermia模型拟合精度 | ||
|---|---|---|---|
| 完全孔堵塞 | 中间孔堵塞 | 标准孔堵塞 | |
| 30 | 不适用 | 0.9154 | 0.9893 |
| 60 | 0.9864 | 0.9681 | 0.9740 |
| 90 | 0.9626 | 0.9562 | 0.7371 |
| pH | 处理效率/(L/h) | 最大通量衰减 程度/% | 不可逆通量 衰减程度/% |
|---|---|---|---|
| 5.8 | 2.22 | 39 | 9.50 |
| 1 | 3.56 | 34 | 1.10 |
Table 8 Component concentration efficiency and flux attenuation degree
| pH | 处理效率/(L/h) | 最大通量衰减 程度/% | 不可逆通量 衰减程度/% |
|---|---|---|---|
| 5.8 | 2.22 | 39 | 9.50 |
| 1 | 3.56 | 34 | 1.10 |
| pH | 离子 | 时间/(min) | 浓度/(g/L) | |
|---|---|---|---|---|
| 真实 | 理论 | |||
| 5.8 | Ca2+ | 35 | 0.797 | 0.791 |
| 65 | 1.247 | 1.4 | ||
| La3+ | 35 | 0.528 | 0.525 | |
| 65 | 1.062 | 0.96 | ||
| 1 | Ca2+ | 55 | 1.359 | 1.3 |
| La3+ | 0.925 | 0.893 | ||
Table 9 Real ion concentration and theoretical concentration during the concentration process of components
| pH | 离子 | 时间/(min) | 浓度/(g/L) | |
|---|---|---|---|---|
| 真实 | 理论 | |||
| 5.8 | Ca2+ | 35 | 0.797 | 0.791 |
| 65 | 1.247 | 1.4 | ||
| La3+ | 35 | 0.528 | 0.525 | |
| 65 | 1.062 | 0.96 | ||
| 1 | Ca2+ | 55 | 1.359 | 1.3 |
| La3+ | 0.925 | 0.893 | ||
| [1] | Xu Z G, Li G, Yang H F, et al. Development review on leaching technology and leaching agents of weathered crust elution-deposited rare earth ores[J]. Minerals, 2023, 13(9): 1223. |
| [2] | Xiao Y F, Feng Z Y, Huang X W, et al. Recovery of rare earth from the ion-adsorption type rare earths ore(Ⅱ): Compound leaching[J]. Hydrometallurgy, 2016, 163: 83-90. |
| [3] | He Q, Qiu J, Chen J F, et al. Progress in green and efficient enrichment of rare earth from leaching liquor of ion adsorption type rare earth ores[J]. Journal of Rare Earths, 2022, 40(3): 353-364. |
| [4] | 王道广, 王均凤, 张香平, 等. 离子液体在稀土萃取分离中的应用[J]. 化工学报, 2020, 71(10): 4379-4394. |
| Wang D G, Wang J F, Zhang X P, et al. Application of ionic liquid in extraction and separation of rare earth[J]. CIESC Journal, 2020, 71(10): 4379-4394. | |
| [5] | Liu L L, Liu Y X, Luo J Q, et al. Membrane pre-concentration as an efficient strategy to enhance the enrichment of rare earth by MgO precipitation[J]. Chemical Engineering Journal, 2024, 491: 152083. |
| [6] | Zhu D M, Qiu T S, Zhong J F, et al. Molecular dynamics simulation of aluminum inhibited leaching during ion-adsorbed type rare earth ore leaching process[J]. Journal of Rare Earths, 2019, 37(12): 1334-1340. |
| [7] | 刘宁, 褚昌辉, 王乾, 等. 用于混合一价盐分离的纳滤膜的制备及性能研究[J]. 化工学报, 2021, 72(1): 578-588. |
| Liu N, Chu C H, Wang Q, et al. Preparation of nanofiltration membrane for separation of mixed monovalent salts[J]. CIESC Journal, 2021, 72(1): 578-588. | |
| [8] | Shirazi S, Lin C J, Chen D. Inorganic fouling of pressure-driven membrane processes: a critical review[J]. Desalination, 2010, 250(1): 236-248. |
| [9] | Zhu X B, Jassby D. Electroactive membranes for water treatment: enhanced treatment functionalities, energy considerations, and future challenges[J]. Accounts of Chemical Research, 2019, 52(5): 1177-1186. |
| [10] | Ashfaq M Y, Al-Ghouti M A, Da'na D A, et al. Investigating the effect of temperature on calcium sulfate scaling of reverse osmosis membranes using FTIR, SEM-EDX and multivariate analysis[J]. Science of the Total Environment, 2020, 703: 134726. |
| [11] | Wang Y B, Mao X Y, Chen C, et al. Effect of sulfuric acid concentration on morphology of calcium sulfate hemihydrate crystals[J]. Materials Research Express, 2020, 7(10): 105501. |
| [12] | Clampett J B, Fowler R T. Equilibrium solubility of calcium sulphate hemihydrate in sodium chloride: magnesium sulphate solutions at elevated temperatures[J]. Journal of Applied Chemistry, 1964, 14(2): 81-86. |
| [13] | Zhang T, Wang Q Y, Yang Y, et al. Revealing the contradiction between DLVO/XDLVO theory and membrane fouling propensity for oil-in-water emulsion separation[J]. Journal of Hazardous Materials, 2024, 466: 133594. |
| [14] | 唐和礼, 张冰, 黄冬梅, 等. XDLVO理论在膜污染解析中的应用研究[J]. 化工学报, 2021, 72(3): 1230-1241. |
| Tang H L, Zhang B, Huang D M, et al. Advances in membrane fouling analysis based on XDLVO theory[J]. CIESC Journal, 2021, 72(3): 1230-1241. | |
| [15] | Wang L, Li Z H, Fan J H, et al. The intelligent prediction of membrane fouling during membrane filtration by mathematical models and artificial intelligence models[J]. Chemosphere, 2024, 349: 141031. |
| [16] | Zheng W J, Chen Y, Xu X H, et al. Research on the factors influencing nanofiltration membrane fouling and the prediction of membrane fouling[J]. Journal of Water Process Engineering, 2024, 59: 104876. |
| [17] | Gao M F, He Q L, Dong H Z, et al. Identification of the coupled fouling mechanism involved in microfiltration of tobacco extracts liquid by multistage Hermia model[J]. Journal of Food Process Engineering, 2022, 45(2): e13961. |
| [18] | Ahmad A, Raish M, Alkharfy K M, et al. Solubility, solubility parameters and solution thermodynamics of thymoquinone in different mono solvents[J]. Journal of Molecular Liquids, 2018, 272: 912-918. |
| [19] | Fan C Y, Yan J M, Liu H D, et al. Performance and membrane fouling characteristics of a drinking water multistage NF system based on membrane autopsy from a full-scale system[J]. Journal of Water Process Engineering, 2024, 58: 104909. |
| [20] | Field R W, Wu D, Howell J A, et al. Critical flux concept for microfiltration fouling[J]. Journal of Membrane Science, 1995, 100(3): 259-272. |
| [21] | Xie D Y, Li J, Zhang H, et al. A novel electrochemical method for the removal of aluminum from ionic rare earth leachate[J]. Separation and Purification Technology, 2024, 345: 127296. |
| [22] | 鹿钦礼, 刘德俊, 马贵阳, 等. 注汽锅炉高含盐回用水引发爆管分析[J]. 辽宁石油化工大学学报, 2010, 30(2): 19-22. |
| Lu Q L, Liu D J, Ma G Y, et al. Analysis of explosion of tube with high salt recycling water in steam injection boiler[J]. Journal of Liaoning Shihua University, 2010, 30(2): 19-22. | |
| [23] | Zhang Z X, Bright V M, Greenberg A R. Use of capacitive microsensors and ultrasonic time-domain reflectometry for in-situ quantification of concentration polarization and membrane fouling in pressure-driven membrane filtration[J]. Sensors and Actuators B: Chemical, 2006, 117(2): 323-331. |
| [24] | Cui C, Luo C, Tian T, et al. Comparative evaluation of acid-resistant nanofiltration membranes for heavy metal removal in acidic wastewater[J]. Desalination, 2024, 576: 117349. |
| [25] | Lee J, Shin Y, Boo C, et al. Performance, limitation, and opportunities of acid-resistant nanofiltration membranes for industrial wastewater treatment[J]. Journal of Membrane Science, 2023, 666: 121142. |
| [26] | Bai Y, Gao P, Fang R, et al. Constructing positively charged acid-resistant nanofiltration membranes via surface postgrafting for efficient removal of metal ions from electroplating rinse wastewater[J]. Separation and Purification Technology, 2022, 297: 121500. |
| [27] | Hoang T A, Ang H M, Rohl A L. Effects of temperature on the scaling of calcium sulphate in pipes[J]. Powder Technology, 2007, 179(1/2): 31-37. |
| [28] | Li J F, Liu P P, Wu C L, et al. Common ion effect in the hydrolysis reaction of MgCa alloy hydride-salt composites[J]. International Journal of Hydrogen Energy, 2017, 42(2): 1429-1435. |
| [29] | Dutrizac J E. The behaviour of the rare earth elements during gypsum (CaSO4·2H2O) precipitation[J]. Hydrometallurgy, 2017, 174: 38-46. |
| [30] | Barati N, Husein M M, Azaiez J. Iron oxide doped ceramic membranes for combined organic-inorganic colloidal fouling mitigation[J]. Separation and Purification Technology, 2023, 323: 124498. |
| [31] | Hoek E M V, Kim A S, Elimelech M. Influence of crossflow membrane filter geometry and shear rate on colloidal fouling in reverse osmosis and nanofiltration separations[J]. Environmental Engineering Science, 2002, 19(6): 357-372. |
| [32] | Chong Y K, Fletcher D F, Liang Y Y. CFD simulation of hydrodynamics and concentration polarization in osmotically assisted reverse osmosis membrane systems[J]. Journal of Water Process Engineering, 2024, 57: 104535. |
| [1] | Fang WANG, Suxia MA, Ying TIAN, Zhongyuan LIU. NO x emission prediction method of CFB unit based on 1D mechanism model dynamicly corrected with LSTM [J]. CIESC Journal, 2025, 76(7): 3416-3425. |
| [2] | Yanqiu LU, Yang DI, Wenbo SHI, Congcong YIN, Yong WANG. Research progress of smart responsive membranes based on novel porous organic polymers [J]. CIESC Journal, 2025, 76(5): 2101-2118. |
| [3] | Xinchen XIANG, Dan LU, Ying ZHAO, Zhikan YAO, Ruiqiang KOU, Danjun ZHENG, Zhijun ZHOU, Lin ZHANG. Preparation of highly positively charged NF membranes with surface quaternization modification and Li+/Mg2+ separation performance [J]. CIESC Journal, 2025, 76(5): 2377-2386. |
| [4] | Fangping XU, Hui YANG, Jun CHEN, Jianyong ZHU, Rongxiu LU. Soft sensor of rare earth element content with transfer learning and residual attention convolutional neural network [J]. CIESC Journal, 2025, 76(4): 1647-1660. |
| [5] | Lingyu LI, Xin HU, Huaigang CHENG, Yun ZHAO, Dong AN, Yujun MA, Jiahao JIN, Xudong YU, Weidong ZHANG. Isothermal evaporation salt-forming regions of the ternary water-salt systems K+(Mg2+), Ca2+//Cl--H2O [J]. CIESC Journal, 2025, 76(1): 120-130. |
| [6] | Xinyue WANG, Xiaohu XU, Haiyang ZHANG, Chunhua YIN. Study on encapsulation and properties vitamin A acetate/cyclodextrin [J]. CIESC Journal, 2024, 75(S1): 321-328. |
| [7] | Zhixing ZHAO, Zhihao YAO, Xuefeng YU, Yousheng YANG, Ying ZENG, Xudong YU. Multi-temperature phase diagram of lithium-sodium-magnesium coexistence sulfate system and its application [J]. CIESC Journal, 2024, 75(6): 2123-2133. |
| [8] | Youming SI, Lingfeng ZHENG, Pengzhong CHEN, Jiangli FAN, Xiaojun PENG. Performance and mechanism of novel antimony oxo cluster photoresist [J]. CIESC Journal, 2024, 75(4): 1705-1717. |
| [9] | Yuxiang CHEN, Chuanlei LIU, Zijun GONG, Qiyue ZHAO, Guanchu GUO, Hao JIANG, Hui SUN, Benxian SHEN. Machine learning-assisted solvent molecule design for efficient absorption of ethanethiol [J]. CIESC Journal, 2024, 75(3): 914-923. |
| [10] | Yong ZHANG, Jingbo ZHAO, Limin QUAN. A prediction method for effluent ammonia nitrogen concentration based on convolutional layer and attention mechanism long short-term memory network [J]. CIESC Journal, 2024, 75(12): 4679-4688. |
| [11] | Yuxi WU, Yuanhui TANG, Qiang GUO, Yakai LIN, Lixin YU, Xiaolin WANG. Experimental study and simulation on nanofiltration separation of lithium and magnesium from sulfate desorption solution [J]. CIESC Journal, 2024, 75(12): 4563-4575. |
| [12] | Han TANG, Jin CAI, Haihang QIN, Guangjin CHEN, Changyu SUN. Predictive model on gas solubility in water-rich phase coexisted with gas hydrates [J]. CIESC Journal, 2024, 75(11): 4348-4358. |
| [13] | Chao HU, Yuming DONG, Wei ZHANG, Hongling ZHANG, Peng ZHOU, Hongbin XU. Preparation of high-concentration positive electrolyte of vanadium redox flow battery by activating vanadium pentoxide with highly concentrated sulfuric acid [J]. CIESC Journal, 2023, 74(S1): 338-345. |
| [14] | Xudong YU, Qi LI, Niancu CHEN, Li DU, Siying REN, Ying ZENG. Phase equilibria and calculation of aqueous ternary system KCl + CaCl2 + H2O at 298.2, 323.2, and 348.2 K [J]. CIESC Journal, 2023, 74(8): 3256-3265. |
| [15] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||