CIESC Journal ›› 2025, Vol. 76 ›› Issue (9): 4683-4693.DOI: 10.11949/0438-1157.20250198
• Special Column: Modeling and Simulation in Process Engineering • Previous Articles Next Articles
Yifei WANG1(
), Yuxing LI1(
), Xin OUYANG2, Xuefeng ZHAO3, Lan MENG3, Qihui HU1, Buze YIN1, Yaqi GUO1
Received:2025-02-28
Revised:2025-04-09
Online:2025-10-23
Published:2025-09-25
Contact:
Yuxing LI
王一飞1(
), 李玉星1(
), 欧阳欣2, 赵雪峰3, 孟岚3, 胡其会1, 殷布泽1, 郭雅琦1
通讯作者:
李玉星
作者简介:王一飞(2000—),男,硕士研究生,s23060043@upc.edu.cn
基金资助:CLC Number:
Yifei WANG, Yuxing LI, Xin OUYANG, Xuefeng ZHAO, Lan MENG, Qihui HU, Buze YIN, Yaqi GUO. Numerical calculation of CO2 pipeline fracture propagation based on crack tip decompression characteristics[J]. CIESC Journal, 2025, 76(9): 4683-4693.
王一飞, 李玉星, 欧阳欣, 赵雪峰, 孟岚, 胡其会, 殷布泽, 郭雅琦. 基于裂尖减压特性的CO2管道断裂扩展数值计算[J]. 化工学报, 2025, 76(9): 4683-4693.
Add to citation manager EndNote|Ris|BibTeX
| 名称 | 距泄漏口距离/m |
|---|---|
| PG1 | 0.10 |
| PG2 | 0.25 |
| PG3 | 3.00 |
| PG4 | 19.35 |
Table 1 Distribution of high-frequency pressure sensor locations
| 名称 | 距泄漏口距离/m |
|---|---|
| PG1 | 0.10 |
| PG2 | 0.25 |
| PG3 | 3.00 |
| PG4 | 19.35 |
| 初始压力/MPa | 初始温度/℃ | CO2注入量/kg | CO2相态 | 泄漏孔径/mm | 开度/% |
|---|---|---|---|---|---|
| 5.4 | 41 | 75.74 | 气相 | 187 | 100 |
Table 2 Initial working conditions of excitation tube test
| 初始压力/MPa | 初始温度/℃ | CO2注入量/kg | CO2相态 | 泄漏孔径/mm | 开度/% |
|---|---|---|---|---|---|
| 5.4 | 41 | 75.74 | 气相 | 187 | 100 |
| 位置 | 平台压力试验值/MPa | 平台压力计算值/MPa | 相对误差/% |
|---|---|---|---|
| PG1 | 2.10 | 2.03 | -3.33 |
| PG2 | 2.26 | 2.33 | 3.10 |
| PG3 | 2.77 | 2.85 | 2.89 |
Table 3 Calculation error analysis of near leakage port pressure platform
| 位置 | 平台压力试验值/MPa | 平台压力计算值/MPa | 相对误差/% |
|---|---|---|---|
| PG1 | 2.10 | 2.03 | -3.33 |
| PG2 | 2.26 | 2.33 | 3.10 |
| PG3 | 2.77 | 2.85 | 2.89 |
| 初始温度/℃ | 初始压力/MPa | 介质体积分数/% | |||
|---|---|---|---|---|---|
| CO2 | H2 | N2 | CH4 | ||
| 15 | 15.02 | 90.3 | 1.1 | 6.6 | 2.0 |
Table 4 Initial conditions and media components of the burst test
| 初始温度/℃ | 初始压力/MPa | 介质体积分数/% | |||
|---|---|---|---|---|---|
| CO2 | H2 | N2 | CH4 | ||
| 15 | 15.02 | 90.3 | 1.1 | 6.6 | 2.0 |
| 屈服强度 | 抗拉强度 | 夏比冲击功CV/J |
|---|---|---|
| 470 | 577 | 102 |
Table 5 Parameters related to the initiation pipe
| 屈服强度 | 抗拉强度 | 夏比冲击功CV/J |
|---|---|---|
| 470 | 577 | 102 |
| 材料 | 密度/(kg/m3) | 弹性剪切模量/MPa | 泊松比 | 摩擦角/(°) | 膨胀角/(°) | 黏聚力/kPa |
|---|---|---|---|---|---|---|
| 回填土 | 1900 | 14.8 | 0.35 | 25 | 0° | 8 |
Table 6 Parameters of Moore-Coulomb eigenstructural equation for backfill soil
| 材料 | 密度/(kg/m3) | 弹性剪切模量/MPa | 泊松比 | 摩擦角/(°) | 膨胀角/(°) | 黏聚力/kPa |
|---|---|---|---|---|---|---|
| 回填土 | 1900 | 14.8 | 0.35 | 25 | 0° | 8 |
| 环向应力/MPa | Mises应力/MPa | 最大主应力/MPa |
|---|---|---|
| 1075 | 1204 | 1204 |
Table 7 The stress at the crack tip when the initiation pipe begins to crack
| 环向应力/MPa | Mises应力/MPa | 最大主应力/MPa |
|---|---|---|
| 1075 | 1204 | 1204 |
| [1] | 余珮, 郝瑞雪, 孙永平. 全球清洁能源合作伙伴关系下的中欧技术合作[J]. 欧洲研究, 2023, 41(4): 30-54. |
| Yu P, Hao R X, Sun Y P. An assessment of China-Europe technology cooperation under the global clean energy partnership[J]. Chinese Journal of European Studies, 2023, 41(4): 30-54. | |
| [2] | 杨永钊, 周进生, 胡海文, 等. CCUS-EOR产业的发展现状、经济效益与未来展望[J]. 中国矿业, 2025, 34(2): 190-203. |
| Yang Y Z, Zhou J S, Hu H W, et al. Development status, economic benefits and future prospects of CCUS-EOR industry[J]. China Mining Magazine, 2025, 34(2): 190-203. | |
| [3] | 霍军良, 唐治国, 邱宗君, 等. 节流作用下CO2管道放空过程的冻堵风险实验研究[J]. 化工学报, 2025, 76(4): 1898-1908. |
| Huo J L, Tang Z G, Qiu Z J, et al. Experimental study on freezing and blocking risk of CO2 pipeline during venting under throttling[J]. China Industrial Economics, 2025, 76(4): 1898-1908. | |
| [4] | 胡其会, 李玉星, 张建, 等. "双碳"战略下中国CCUS技术现状及发展建议[J]. 油气储运, 2022, 41(4): 361-371. |
| Hu Q H, Li Y X, Zhang J, et al. Current status and development suggestions of CCUS technology in China under the "Double Carbon" strategy[J]. Oil & Gas Storage and Transportation, 2022, 41(4): 361-371. | |
| [5] | 闫振汉, 喻健良, 闫兴清, 等. 密相CO2管道泄漏失压过程热力学特性[J]. 化工学报, 2019, 70(8): 3071-3077. |
| Yan Z H, Yu J L, Yan X Q, et al. Thermodynamic characteristics during decompression process of dense phase CO2 pipeline leakage[J]. CIESC Journal, 2019, 70(8): 3071-3077. | |
| [6] | 孙境泽. CCUS管道超临界/密相CO2泄漏过程分析与研究[J]. 石油石化节能与计量, 2024, 14(12): 70-75. |
| Sun J Z. Analysis and research of supercritical/dense phase CO2 leakage process in CCUS pipeline[J]. Energy Conservation and Measurement in Petroleum & Petrochemical Industry, 2024, 14(12): 70-75. | |
| [7] | 李凯旋, 梁俊逸, 刘斌, 等. 管道输送高压CO2能耗分析及相态选择研究[J]. 油气田地面工程, 2025, 44(2): 1-7. |
| Li K X, Liang J Y, Liu B, et al. Energy consumption analysis and phase selection study of high-pressure CO2 transportation in pipelines[J]. Oil-Gas Field Surface Engineering, 2025, 44(2): 1-7. | |
| [8] | Huang W H, Li Y X, Chen P C. China's CO2 pipeline development strategy under carbon neutrality[J]. Natural Gas Industry B, 2023, 10(5): 502-510. |
| [9] | 郭晓璐, 喻健良, 闫兴清, 等. 超临界CO2管道泄漏特性研究进展[J]. 化工学报, 2020, 71(12): 5430-5442. |
| Guo X L, Yu J L, Yan X Q, et al. Research progress on leakage characteristics of supercritical CO2 pipeline[J]. CIESC Journal, 2020, 71(12): 5430-5442. | |
| [10] | 李欣泽, 姜星宇, 王德中, 等. 基于等容热力学的超临界CO2管道减压波传播特性研究[J]. 低碳化学与化工, 2024, 49(7): 129-138. |
| Li X Z, Jiang X Y, Wang D Z, et al. Study on propagation characteristics of decompression wave of supercritical CO2 pipeline based on isochoric thermodynamics[J]. Low-Carbon Chemistry and Chemical Engineering, 2024, 49(7): 129-138. | |
| [11] | Liu X, Godbole A, Lu C, et al. Investigation of terrain effects on the consequence distance of CO2 released from high-pressure pipelines[J]. International Journal of Greenhouse Gas Control, 2017, 66: 264-275. |
| [12] | Koornneef J, Spruijt M, Molag M, et al. Quantitative risk assessment of CO2 transport by pipelines: a review of uncertainties and their impacts[J]. Journal of Hazardous Materials, 2010, 177(1/2/3): 12-27. |
| [13] | 张明, 王海锋, 胡其会, 等. 超临界/密相CO2管道泄漏压力响应及低温规律实验研究[J]. 中国安全生产科学技术, 2024, 20(7): 65-71. |
| Zhang M, Wang H F, Hu Q H, et al. Experimental study on leakage pressure response and low-temperature law of supercritical/dense phase CO2 pipeline[J]. Journal of Safety Science and Technology, 2024, 20(7): 65-71. | |
| [14] | 李胜男, 苗青, 欧阳欣, 等. 密相/超临界CO2管道全尺寸爆破试验综述[J]. 石油管材与仪器, 2023, 9(1): 16-22. |
| Li S N, Miao Q, Ouyang X, et al. Overview of full-scale burst test for dense phase/supercritical carbon dioxide pipeline[J]. Petroleum Tubular Goods & Instruments, 2023, 9(1): 16-22. | |
| [15] | Aursand E, Aursand P, Berstad T, et al. CO2 pipeline integrity: a coupled fluid-structure model using a reference equation of state for CO2 [J]. Energy Procedia, 2013, 37: 3113-3122. |
| [16] | Aursand E, Dørum C, Hammer M, et al. CO2 pipeline integrity: comparison of a coupled fluid-structure model and uncoupled two-curve methods[J]. Energy Procedia, 2014, 51: 382-391. |
| [17] | Aursand E, Dumoulin S, Hammer M, et al. Fracture propagation control in CO2 pipelines: validation of a coupled fluid-structure model[J]. Engineering Structures, 2016, 123: 192-212. |
| [18] | Nordhagen H O, Munkejord S T, Hammer M, et al. A fracture-propagation-control model for pipelines transporting CO2-rich mixtures including a new method for material-model calibration[J]. Engineering Structures, 2017, 143: 245-260. |
| [19] | Keim V, Marx P, Nonn A, et al. Fluid-structure-interaction modeling of dynamic fracture propagation in pipelines transporting natural gases and CO2-mixtures[J]. International Journal of Pressure Vessels and Piping, 2019, 175: 103934. |
| [20] | 陈磊, 胡延伟, 闫兴清, 等. CO2管道断裂扩展与管内减压耦合特性数值模拟[J]. 油气储运, 2024, 43(5): 537-544. |
| Chen L, Hu Y W, Yan X Q, et al. Numerical simulation of coupling characteristics of fracture propagation and pressure reduction in CO2 pipeline[J]. Oil and Gas Storage and Transportation, 2024, 43(5): 537-544. | |
| [21] | 甄莹, 曹宇光, 张振永, 等. 管土耦合作用下超临界CO2管道裂纹动态扩展模拟方法[J]. 石油学报, 2024, 45(7): 1130-1140. |
| Zhen Y, Cao Y G, Zhang Z Y, et al. The numerical simulation method for dynamic crack propagation of supercritical CO2 pipeline under the pipe-soil coupling[J]. Acta Petrolei Sinica, 2024, 45(7): 1130-1140. | |
| [22] | 闫锋, 殷布泽, 欧阳欣, 等. CO2管道泄漏过程减压波数值计算模型及初始温压的影响[J]. 油气储运, 2024, 43(5): 570-578. |
| Yan F, Yin B Z, Ouyang X, et al. Numerical calculation model for decompression waves in CO2 pipeline leakage and effect of initial temperature and pressure[J]. Oil & Gas Storage and Transportation, 2024, 43(5): 570-578. | |
| [23] | Wang Y F, Hu Q H, Yin B Z, et al. Research progress on dynamic crack propagation and crack arrest models of supercritical and dense-phase CO2 pipelines[J]. Journal of Pipeline Science and Engineering, 2025: 100255. |
| [24] | Barnett J, Cooper R. An operator's perspective on fracture control in dense phase CO2 pipelines [C]// Proceedings of the 2016 11th International Pipeline Conference. Volume 3: Operations, Monitoring and Maintenance; Materials and Joining. Calgary, 2016. |
| [25] | Cosham A, Jones D G, Armstrong K, et al. Analysis of a dense phase carbon dioxide full-scale fracture propagation test in 24 inch diameter pipe[C]// 2016 11th International Pipeline Conference. Calgary, 2016. |
| [26] | Chen L, Hu Y W, Yang K, et al. Fracture process characteristic study during fracture propagation of a CO2 transport network distribution pipeline[J]. Energy, 2023, 283: 129060. |
| [27] | Zhu X K. State-of-the-art review of fracture control technology for modern and vintage gas transmission pipelines[J]. Engineering Fracture Mechanics, 2015, 148: 260-280. |
| [28] | 顾帅威. 不同相态CO2管道减压过程流动与温降特性研究[D]. 青岛: 中国石油大学(华东), 2019. |
| Gu S W. Flow and temperature drop characterization of CO2 pipeline depressurization process with different phases[D]. Qingdao: China University of Petroleum (East China), 2019. | |
| [29] | Gu S W, Li Y X, Teng L, et al. A new model for predicting the decompression behavior of CO2 mixtures in various phases[J]. Process Safety and Environmental Protection, 2018, 120: 237-247. |
| [30] | Uddin M, Wilkowski G. Simulation of dynamic crack propagation and arrest using various types of crack arrestor[C]//2016 11th International Pipeline Conference. Calgary, 2016. |
| [31] | Gruben G, Dumoulin S, Nordhagen H, et al. Simulation of a full-scale CO2 fracture propagation test[C]//2018 12th International Pipeline Conference. Calgary, 2018. |
| [1] | Zixiang ZHAO, Zhongdi DUAN, Haoran SUN, Hongxiang XUE. Numerical modelling of water hammer induced by two phase flow with large temperature difference [J]. CIESC Journal, 2025, 76(S1): 170-180. |
| [2] | Hao HUANG, Wen WANG, Longkun HE. Simulation and analysis on precooling process of membrane LNG carriers [J]. CIESC Journal, 2025, 76(S1): 187-194. |
| [3] | Siyuan WANG, Guoqiang LIU, Tong XIONG, Gang YAN. Characteristics of non-uniform wind velocity distribution in window air conditioner axial fans and their impact on optimizing condenser circuit optimization [J]. CIESC Journal, 2025, 76(S1): 205-216. |
| [4] | Qingtai CAO, Songyuan GUO, Jianqiang LI, Zan JIANG, Bin WANG, Rui ZHUAN, Jingyi WU, Guang YANG. Numerical study on influence of perforated plate on retention performance of liquid oxygen tank under negative gravity [J]. CIESC Journal, 2025, 76(S1): 217-229. |
| [5] |
Jichao GUO, Xiaoxiao XU, Yunlong SUN.
Airflow simulation and optimization based on |
| [6] | Jiuchun SUN, Yunlong SANG, Haitao WANG, Hao JIA, Yan ZHU. Study on influence of jet flow on slurry transport characteristics in slurry chamber of shield tunneling machines [J]. CIESC Journal, 2025, 76(S1): 246-257. |
| [7] | Fanchen KONG, Shuo ZHANG, Mingsheng TANG, Huiming ZOU, Zhouhang HU, Changqing TIAN. Simulation of gas bearings in carbon dioxide linear compressors [J]. CIESC Journal, 2025, 76(S1): 281-288. |
| [8] | Ting HE, Shuyang HUANG, Kun HUANG, Liqiong CHEN. Research on the coupled process of natural gas chemical absorption decarbonization and high temperature heat pump based on waste heat utilization [J]. CIESC Journal, 2025, 76(S1): 297-308. |
| [9] | Ting HE, Kai ZHANG, Wensheng LIN, Liqiong CHEN, Jiafu CHEN. Research on integrated process of cryogenic CO2 removal under supercritical pressure and liquefaction for biogas [J]. CIESC Journal, 2025, 76(S1): 418-425. |
| [10] | Haolei DUAN, Haoyuan CHEN, Kunfeng LIANG, Lin WANG, Bin CHEN, Yong CAO, Chenguang ZHANG, Shuopeng LI, Dengyu ZHU, Yaru HE, Dapeng YANG. Performance analysis and comprehensive evaluation of thermal management system schemes with low GWP refrigerants [J]. CIESC Journal, 2025, 76(S1): 54-61. |
| [11] | Junpeng WANG, Jiaqi FENG, Enbo ZHANG, Bofeng BAI. Study on flow and cavitation characteristic in zigzag and array labyrinth valve core structures [J]. CIESC Journal, 2025, 76(S1): 93-105. |
| [12] | Kaiyuan YANG, Xizhong CHEN. Comparison of discrete element method and finite-discrete element method for simulation of agglomerate breakage [J]. CIESC Journal, 2025, 76(9): 4398-4411. |
| [13] | Sheng CHEN, Zizheng LI, Chao MIAO, Xuegang BAI, Fei LI, Jiaxuan LIU, Tiantian LI, Shuang YANG, Rongrong LYU, Jiangyun WANG. Three-dimensional CFD simulation of non-uniform diffusion characteristic of high-risk chlorine gas in large-scale dense scene [J]. CIESC Journal, 2025, 76(9): 4630-4643. |
| [14] | Jianmin ZHANG, Meigui HE, Wanxin JIA, Jing ZHAO, Wanqin JIN. Poly(ethylene oxide)/crown ether blend membrane and performance for CO2 separation [J]. CIESC Journal, 2025, 76(9): 4862-4871. |
| [15] | Yiyang LIU, Zhixiang XING, Yecheng LIU, Ming PENG, Yuyang LI, Yunhao LI, Ningzhou SHEN. Numerical simulation study on the leakage diffusion characteristics and safety monitoring of liquid hydrogen in hydrogen refueling stations [J]. CIESC Journal, 2025, 76(9): 4694-4708. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||