CIESC Journal ›› 2025, Vol. 76 ›› Issue (9): 4398-4411.DOI: 10.11949/0438-1157.20250078

• Special Column: Modeling and Simulation in Process Engineering • Previous Articles     Next Articles

Comparison of discrete element method and finite-discrete element method for simulation of agglomerate breakage

Kaiyuan YANG(), Xizhong CHEN()   

  1. Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2025-01-17 Revised:2025-02-15 Online:2025-10-23 Published:2025-09-25
  • Contact: Xizhong CHEN

颗粒破碎的离散元及有限离散元模拟方法比较

杨开源(), 陈锡忠()   

  1. 上海交通大学化学化工学院化学工程系,上海 200240
  • 通讯作者: 陈锡忠
  • 作者简介:杨开源(1998—),男,硕士研究生,kaiyuan.yang@sjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(22308212)

Abstract:

Particle material agglomerates are common in chemical processes. They often cause deformation and crushing due to internal interactions or collisions with reactors during transportation. Since these destructive processes occur over extremely short time spans, traditional experimental methods struggle to achieve effective observation. Numerical simulation tools, such as the discrete element method (DEM) and the finite element method (FEM), provide effective means to reveal such transient processes. Leveraging the strengths of both approaches, the combined finite-discrete element method (FDEM) has been proposed and applied in related research. This study employs an improved elastoplastic Timoshenko beam-bonded DEM model (referred to as the Shanghai Jiaotong bond model, SJBM) and an elastoplastic FDEM model to comparatively simulate particle collision and uniaxial compression processes. The results demonstrate that the SJBM model can more precisely capture stress concentration and evolution characteristics within particle systems, particularly revealing richer micro-mechanical details during dynamic deformation processes. FDEM ensures simulation accuracy while automatically transitioning material behavior and maintaining relatively low computational resource consumption. The comparison between these two methods provides a basis for selecting model tools to optimize more complex chemical processes and particulate processes.

Key words: granular materials, discrete element method (DEM), finite-discrete element method (FDEM), Shanghai Jiaotong bond model (SJBM), particulate processes, numerical simulation

摘要:

颗粒物料团聚体在化工过程中普遍存在,其在运输时常因内部相互作用或与反应器碰撞引发变形及破碎现象。这些破坏过程时间极短,传统实验手段难以有效观测。离散元方法(DEM)和有限元方法(FEM)是两种常见的数值模拟方法。结合这两种方法的优势,有限离散元方法(FDEM)应运而生。使用改进的弹塑性铁摩辛柯梁胶结DEM模型(上交胶结模型,SJBM)与弹塑性FDEM模型,分别对颗粒碰撞和单轴压缩进行模拟。结果表明,SJBM能更精细刻画颗粒体系的应力集中与演化,在变形过程中展现出更细节的微观力学特征;FDEM在保证模拟精度的前提下,自动转换材料行为,具有相对较低的计算资源消耗。两种方法的比较,为更复杂化工过程优化和颗粒过程预测提供了模拟工具的选择依据。

关键词: 颗粒物料, 离散元方法, 有限离散元方法, 上交胶结模型, 颗粒过程, 数值模拟

CLC Number: