[1] |
Rose J W. Dropwise condensation theory and experiment: a review[J]. Proc. Inst. Mech. Eng., Part A: Journal of Power and Energy, 2002, 216(2): 115-128
|
[2] |
Ma X H, Rose J W, Xu D Q, et al. Advances in dropwise condensation heat transfer—Chinese research[J]. Chemical Engineering Journal, 2000, 78(2/3): 87-93
|
[3] |
Liao Qiang(廖强), Gu Yangbiao(顾扬彪), Zhu Xun(朱恂), Wang Hong(王宏). Dropwise condensation heat transfer on surface with gradient surface energy [J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2007, 58(3): 567-574
|
[4] |
Huo Subin(霍素斌), Yu Zhijia(于志家), Li Yangfeng(李艳峰), Liu Yun(刘芸), Sun Xiangyu(孙相彧), Song Shanpeng(宋善鹏). Flow characteristics of water in microchannel with super-hydrophobic surface[J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2007, 58(11): 2721-2725
|
[5] |
Rothstein J P. Slip on superhydrophobic surfaces[J]. Annual Review of Fluid Mechanics, 2010, 42:89-109
|
[6] |
Cheng Y T, Rodak D E. Is the lotus leaf superhydrophobic? [J]. Applied Physics Letters, 2005, 86(14): 144101-1
|
[7] |
Cheng Y T, Rodak D E, Angelopoulos A, et al. Microscopic observations of condensation of water on lotus leaves[J]. Appl. Phys. Lett., 2005, 87(19): 194112-1
|
[8] |
Ishino C, Okumura K, Quéré D. Wetting transitions on rough surfaces[J]. Europhys. Lett. ,2004 , 68(3): 419-425
|
[9] |
Patankar N A. Transition between superhydrophobic states on rough surfaces[J]. Langmuir, 2004, 20(17): 7097-7102
|
[10] |
Zhang J L, Li J A, Han Y C. Superhydrophobic PTFE surfaces by extension[J]. Macromolecular Rapid Communications, 2004, 25(11): 1105-1108
|
[11] |
Chung J Y, Youngblood J, Stafford C. Anisotropic wetting on tunable micro-wrinkled surfaces[J]. Soft Matter., 2007, 3: 1163-1169
|
[12] |
Dorrer C, Rühe J. Condensation and wetting transitions on microstructured ultrahydrophobic surfaces[J]. Langmuir, 2007, 23(7): 3820-3824
|
[13] |
Krupenkin T N, Taylor J A, Wang E N, et al. Reversible wetting-dewetting transitions on electrically tunable superhydrophobic nanostructured surfaces[J]. Langmuir, 2007, 23(7): 9128-9133
|
[14] |
Dhindsa M S, Smith N R, Heikenfeld J. Reversible electrowetting of vertically aligned superhydrophobic carbon nanofibers[J]. Langmuir, 2006, 22(21): 9030-9034
|
[15] |
Bahadur V, Garimella S V. Electrowetting-based control of droplet transition and morphology on artificially microstructured surfaces[J]. Langmuir, 2008, 24 (15): 8338-8345
|
[16] |
Jiang Lei(江雷). Dual-responsive tungsten oxide film of wettability and photochromism [J]. China Basic Science(中国基础科学), 2007,3: 22-23
|
[17] |
Gras S L, Mahmud T, Rosengarten G, et al. Intelligent control of surface hydrophobicity[J]. Chem. Phys. Chem., 2007, 8(14): 2036-2050
|
[18] |
Chung J Y, Youngblood J, Stafford C. Anisotropic wetting on tunable micro-wrinkled surfaces[J]. Soft Matter., 2007, 3(9): 1163-1169
|
[19] |
Motornov M, Minko S, Eichhorn K J, et al. Reversible tuning of wetting behavior of polymer surface with responsive polymer brushes[J]. Langmuir, 2003, 19(19): 8077-8085
|
[20] |
Lafuma A, Quéré D. Superhydrophobic states[J]. Nature Materials, 2003, 2(7): 457-460
|
[21] |
Liu B, Lange F F. Pressure induced transition between superhydrophobic states: configuration diagrams and effect of surface feature size[J]. Journal of Colloid and Interface Science, 2006, 298(2): 899-909
|
[22] |
Bormashenko E, Pogreb R, Whyman G, et al. Vibration-induced Cassie-Wenzel wetting transition on rough surfaces[J]. Appl. Phys. Lett., 2007, 90(20): 201917-1
|
[23] |
Bormashenko E, Pogreb R, Whyman G, et al. Resonance Cassie-Wenzel wetting transition for horizontally vibration drops deposited on a rough surface[J]. Langmuir, 2007, 23(24): 12217-12221
|
[24] |
Boreyko J B, Chen C H. Restoring superhydrophobicity of lotus leaves with vibration-induced dewetting[J]. Physical Review Letters, 2009, 103(17): 174502-1
|
[25] |
Zhang X, Shi F, Niu J, Jiang Y G, Wang Z Q. Superhydrophobic surfaces: from structural control to functional application[J]. Journal of Materials Chemistry, 2008, 18(6):621-633
|
[26] |
Jung Y C, Bhushan B. Dynamic effects induced transition of droplets on biomimetic superhydrophobic surfaces[J]. Langmuir, 2009, 25(16): 9208-9218
|
[27] |
Noblin X, Buguin A, Brochard-Wyart F. Vibrated sessile drops: transition between pinned and mobile contact line oscillations[J]. The European Physical Journal E, 2004, 14(4): 395-404
|
[28] |
Marmur A. Wetting on hydrophobic rough surfaces: to be heterogeneous or no to be?[J]. Langmuir, 2003, 19(20): 8343-8348
|
[29] |
Teng Xinrong(滕新荣). Physical Chemistry of Surfaces(表面物理化学)[M]. Beijing: Chemical Industry Press, 2009: 31-32
|