CIESC Journal ›› 2023, Vol. 74 ›› Issue (7): 3018-3027.DOI: 10.11949/0438-1157.20230367
• Energy and environmental engineering • Previous Articles Next Articles
Chunyu LIU1(), Huanyu ZHOU1, Yue MA1,2, Changtao YUE1,2()
Received:
2023-04-12
Revised:
2023-06-12
Online:
2023-08-31
Published:
2023-07-05
Contact:
Changtao YUE
通讯作者:
岳长涛
作者简介:
刘春雨(1990—),女,博士研究生,liuchunyu_lcy@126.com
基金资助:
CLC Number:
Chunyu LIU, Huanyu ZHOU, Yue MA, Changtao YUE. Drying characteristics and mathematical model of CaO-conditioned oil sludge[J]. CIESC Journal, 2023, 74(7): 3018-3027.
刘春雨, 周桓宇, 马跃, 岳长涛. CaO调质含油污泥干燥特性及数学模型[J]. 化工学报, 2023, 74(7): 3018-3027.
处理方法 | 处理规模 | 适应性 | 成本 | 优势 | 劣势 |
---|---|---|---|---|---|
化学洗涤法 | 大 | 中 | 中 | 操作简单,处理周期短,处理量大 | 油品回收不彻底,产生大量含油废水 |
化学破乳法 | 大 | 中 | 中 | 处理速率快,使用范围广 | 高消耗,高污染,无法循环利用 |
离心法 | 小 | 中 | 高 | 技术成熟,清洁,分离效率高,占地面积小 | 耗能高,处理量小,设备投入高且有噪声 |
溶剂萃取法 | 中 | 中 | 高 | 操作简单,高效,减量化程度高,处理周期短 | 加热所需能耗高,大量有机溶剂污染环境 |
生物处理法 | 大 | 中 | 中 | 对环境适应性强,VOCs排放可控,对环境污染小 | 占地面积大,处理周期长 |
焚烧法 | 大 | 好 | 高 | 燃烧产生的热能可以二次利用,减量化程度高 | 需要脱水处理,需要辅助燃料,产生污染气体 |
干化-热解处理法 | 大 | 好 | 高 | 可以直接得到油品,处理后的污泥污染物含量低 | 设备复杂,消耗大量能源 |
Table 1 Comparison of oil sludge treatment technologies
处理方法 | 处理规模 | 适应性 | 成本 | 优势 | 劣势 |
---|---|---|---|---|---|
化学洗涤法 | 大 | 中 | 中 | 操作简单,处理周期短,处理量大 | 油品回收不彻底,产生大量含油废水 |
化学破乳法 | 大 | 中 | 中 | 处理速率快,使用范围广 | 高消耗,高污染,无法循环利用 |
离心法 | 小 | 中 | 高 | 技术成熟,清洁,分离效率高,占地面积小 | 耗能高,处理量小,设备投入高且有噪声 |
溶剂萃取法 | 中 | 中 | 高 | 操作简单,高效,减量化程度高,处理周期短 | 加热所需能耗高,大量有机溶剂污染环境 |
生物处理法 | 大 | 中 | 中 | 对环境适应性强,VOCs排放可控,对环境污染小 | 占地面积大,处理周期长 |
焚烧法 | 大 | 好 | 高 | 燃烧产生的热能可以二次利用,减量化程度高 | 需要脱水处理,需要辅助燃料,产生污染气体 |
干化-热解处理法 | 大 | 好 | 高 | 可以直接得到油品,处理后的污泥污染物含量低 | 设备复杂,消耗大量能源 |
样品名称 | 工业分析(收到基)/%(质量) | 元素分析(无灰基)/%(质量) | 弹筒发热量(干基)/ (kJ/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
水分 | 灰分 | 挥发分 | 固定碳 | 碳 | 氢 | 氮 | 氧 | 硫 | ||
含油污泥 | 49.44 | 19.21 | 23.81 | 7.54 | 62.14 | 7.82 | 0.59 | 27.04 | 2.41 | 18679 |
Table 2 Analysis of oil sludge basic properties
样品名称 | 工业分析(收到基)/%(质量) | 元素分析(无灰基)/%(质量) | 弹筒发热量(干基)/ (kJ/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
水分 | 灰分 | 挥发分 | 固定碳 | 碳 | 氢 | 氮 | 氧 | 硫 | ||
含油污泥 | 49.44 | 19.21 | 23.81 | 7.54 | 62.14 | 7.82 | 0.59 | 27.04 | 2.41 | 18679 |
模型名称 | 模型表达式 |
---|---|
Henderson and Pabis | MR=aexp(-kt) |
Logarithmic | MR=aexp(-kt)+c |
Page | MR=exp(-ktn ) |
Table 3 Fixed temperature drying model
模型名称 | 模型表达式 |
---|---|
Henderson and Pabis | MR=aexp(-kt) |
Logarithmic | MR=aexp(-kt)+c |
Page | MR=exp(-ktn ) |
模型 | CaO含量/% | 模型参数 | R2 | RSS | χ2 |
---|---|---|---|---|---|
Henderson and Pabis | 0 | k=8.03×10-4, a=1.0487 | 0.9897 | 0.0233 | 0.0009 |
2 | k=0.0028,a=1.0756 | 0.9785 | 0.0247 | 0.0031 | |
5 | k=0.0025,a=1.0608 | 0.9886 | 0.0143 | 0.0014 | |
8 | k=0.0033,a=1.0659 | 0.9781 | 0.0233 | 0.0033 | |
10 | k=0.0044,a=1.0281 | 0.9904 | 0.0078 | 0.0016 | |
12 | k=0.0043,a=1.0323 | 0.9901 | 0.0091 | 0.0015 | |
15 | k=0.0040,a=1.0455 | 0.9832 | 0.0161 | 0.0027 | |
Logarithmic | 0 | k=8.03×10-4,a=1.0487,c=0 | 0.9897 | 0.0233 | 9.69×10-4 |
2 | k=0.0021,a=1.1847,c=-0.1363 | 0.9897 | 0.0119 | 0.0017 | |
5 | k=0.0021,a=1.1144,c=-0.0739 | 0.9937 | 0.0078 | 8.71×10-4 | |
8 | k=0.0025,a=1.1686,c=-0.1265 | 0.9892 | 0.0115 | 0.0019 | |
10 | k=0.0035,a=1.1081,c=-0.0955 | 0.9972 | 0.0023 | 5.76×10-4 | |
12 | k=0.0036,a=1.0907,c=-0.0724 | 0.9961 | 0.0036 | 7.15×10-4 | |
15 | k=0.0031,a=1.1386,c=-0.1131 | 0.9937 | 0.0060 | 0.0012 | |
Page | 0 | k=2.22×10-4,n=1.1694 | 0.9953 | 0.0107 | 4.27×10-4 |
2 | k=2.31×10-4,n=1.4014 | 0.9970 | 0.0034 | 4.28×10-4 | |
5 | k=4.71×10-4,n=1.2624 | 0.9969 | 0.0039 | 3.90×10-4 | |
8 | k=2.61×10-4,n=1.4200 | 0.9971 | 0.0031 | 4.46×10-4 | |
10 | k=0.0010,n=1.2535 | 0.9987 | 0.0011 | 2.18×10-4 | |
12 | k=8.55×10-4,n=1.2791 | 0.9993 | 6.16×10-4 | 1.03×10-4 | |
15 | k=4.73×10-4,n=1.3634 | 0.9985 | 0.0014 | 2.32×10-4 |
Table 4 Fitting results for CaO-conditioned oil sludge with fixed temperature drying model
模型 | CaO含量/% | 模型参数 | R2 | RSS | χ2 |
---|---|---|---|---|---|
Henderson and Pabis | 0 | k=8.03×10-4, a=1.0487 | 0.9897 | 0.0233 | 0.0009 |
2 | k=0.0028,a=1.0756 | 0.9785 | 0.0247 | 0.0031 | |
5 | k=0.0025,a=1.0608 | 0.9886 | 0.0143 | 0.0014 | |
8 | k=0.0033,a=1.0659 | 0.9781 | 0.0233 | 0.0033 | |
10 | k=0.0044,a=1.0281 | 0.9904 | 0.0078 | 0.0016 | |
12 | k=0.0043,a=1.0323 | 0.9901 | 0.0091 | 0.0015 | |
15 | k=0.0040,a=1.0455 | 0.9832 | 0.0161 | 0.0027 | |
Logarithmic | 0 | k=8.03×10-4,a=1.0487,c=0 | 0.9897 | 0.0233 | 9.69×10-4 |
2 | k=0.0021,a=1.1847,c=-0.1363 | 0.9897 | 0.0119 | 0.0017 | |
5 | k=0.0021,a=1.1144,c=-0.0739 | 0.9937 | 0.0078 | 8.71×10-4 | |
8 | k=0.0025,a=1.1686,c=-0.1265 | 0.9892 | 0.0115 | 0.0019 | |
10 | k=0.0035,a=1.1081,c=-0.0955 | 0.9972 | 0.0023 | 5.76×10-4 | |
12 | k=0.0036,a=1.0907,c=-0.0724 | 0.9961 | 0.0036 | 7.15×10-4 | |
15 | k=0.0031,a=1.1386,c=-0.1131 | 0.9937 | 0.0060 | 0.0012 | |
Page | 0 | k=2.22×10-4,n=1.1694 | 0.9953 | 0.0107 | 4.27×10-4 |
2 | k=2.31×10-4,n=1.4014 | 0.9970 | 0.0034 | 4.28×10-4 | |
5 | k=4.71×10-4,n=1.2624 | 0.9969 | 0.0039 | 3.90×10-4 | |
8 | k=2.61×10-4,n=1.4200 | 0.9971 | 0.0031 | 4.46×10-4 | |
10 | k=0.0010,n=1.2535 | 0.9987 | 0.0011 | 2.18×10-4 | |
12 | k=8.55×10-4,n=1.2791 | 0.9993 | 6.16×10-4 | 1.03×10-4 | |
15 | k=4.73×10-4,n=1.3634 | 0.9985 | 0.0014 | 2.32×10-4 |
CaO含量/% | Deff/(10-8 m2/s) |
---|---|
0 | 0.9581 |
2 | 2.1237 |
5 | 1.8530 |
8 | 2.5322 |
10 | 3.3395 |
12 | 3.2326 |
15 | 3.0542 |
Table 5 Effective moisture diffusion coefficient of oil sludge with CaO
CaO含量/% | Deff/(10-8 m2/s) |
---|---|
0 | 0.9581 |
2 | 2.1237 |
5 | 1.8530 |
8 | 2.5322 |
10 | 3.3395 |
12 | 3.2326 |
15 | 3.0542 |
1 | Xu N, Wang W X, Han P F, et al. Effects of ultrasound on oily sludge deoiling[J]. Journal of Hazardous Materials, 2009, 171(1/2/3): 914-917. |
2 | Mrayyan B, Battikhi M N. Biodegradation of total organic carbons (TOC) in Jordanian petroleum sludge[J]. Journal of Hazardous Materials, 2005, 120(1/2/3): 127-134. |
3 | Hassanzadeh M, Tayebi L, Dezfouli H. Investigation of factors affecting on viscosity reduction of sludge from Iranian crude oil storage tanks[J]. Petroleum Science, 2018, 15(3): 634-643. |
4 | Wu X F, Qin H B, Zheng Y X, et al. A novel method for recovering oil from oily sludge via water-enhanced CO2 extraction[J]. Journal of CO2 Utilization, 2019, 33: 513-520. |
5 | 李文英, 李阳, 马艳飞, 等. 含油污泥资源化处理方法进展[J]. 化工进展, 2020, 39(10): 4191-4199. |
Li W Y, Li Y, Ma Y F, et al. Progress of resource treatment methods for oily sludge[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4191-4199. | |
6 | 郭绍辉, 彭鸽威, 闫光绪, 等. 国内外石油污泥处理技术研究进展[J]. 现代化工, 2008, 28(3): 36-39. |
Guo S H, Peng G W, Yan G X, et al. Progress in treatment of petroleum sludge at home and abroad[J]. Modern Chemical Industry, 2008, 28(3): 36-39. | |
7 | Prashanth P F, Shravani B, Vinu R, et al. Production of diesel range hydrocarbons from crude oil sludge via microwave-assisted pyrolysis and catalytic upgradation[J]. Process Safety and Environmental Protection, 2021, 146: 383-395. |
8 | 彭涛. 含油污泥干化热解一体化技术及设备[D]. 常州: 常州大学, 2021. |
Peng T. Integrated technology and equipment for drying and pyrolysis of oily sludge[D]. Changzhou: Changzhou University, 2021. | |
9 | Sivagami K, Tamizhdurai P, Mujahed S, et al. Process optimization for the recovery of oil from tank bottom sludge using microwave pyrolysis[J]. Process Safety and Environmental Protection, 2021, 148: 392-399. |
10 | Zhao C, Li Y Z, Gan Z W, et al. Method of smoldering combustion for refinery oil sludge treatment[J]. Journal of Hazardous Materials, 2021, 409: 124995. |
11 | 孙俊祥. 热化学法清洗油泥过程中化学药剂及工艺条件研究[D]. 大连: 大连理工大学, 2007. |
Sun J X. Research on the technologcial conditions and surfactants in oil sludge washing by thermochemical method[D]. Dalian: Dalian University of Technology, 2007. | |
12 | 王闪闪, 刘宏菊, 张洋洋. 化学破乳法处理孤东油田含油污泥的实验研究[J]. 能源环境保护, 2007, 21(5): 28-30. |
Wang S S, Liu H J, Zhang Y Y. Experimental study on oily sludge in Gudong oilfield with chemical demulsification process[J]. Energy Environmental Protection, 2007, 21(5): 28-30. | |
13 | 屈京. 基于化学-离心法和微波法的含油污泥脱水实验研究[D]. 北京: 中国石油大学(北京), 2021. |
Qu J. Experimental study on dehydration of oily sludge based on chemical-centrifugal method and microwave method[D]. Beijing: China University of Petroleum, 2021. | |
14 | Al-Zahrani S M, Putra M D. Used lubricating oil regeneration by various solvent extraction techniques[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(2): 536-539. |
15 | 姚甜甜. 油田含油污泥的生物法原油回收与无害化处理技术研究[D]. 北京: 中国石油大学(北京), 2020. |
Yao T T. Research on biological method crude oil recovery and harmless treatment technology of oily sludge in oil field[D]. Beijing: China University of Petroleum, 2020. | |
16 | 石丰. 石油污泥热解研究[D]. 上海: 华东理工大学, 2011. |
Shi F. Pyrolysis technology of oily sludge[D]. Shanghai: East China University of Science and Technology, 2011. | |
17 | Liu J G, Jiang X M, Zhou L S, et al. Pyrolysis treatment of oil sludge and model-free kinetics analysis[J]. Journal of Hazardous Materials, 2009, 161(2/3): 1208-1215. |
18 | 李媛. 焚烧工艺在污水厂污泥处理中的应用[J]. 中国环保产业, 2004(1): 32-33. |
Li Y. Application of incineration technology in sludge treatment of sewage plant[J]. China Environmental Protection Industry, 2004(1): 32-33. | |
19 | 车晓军. 含油污泥清洁燃烧技术研究[D]. 西安: 西安石油大学, 2017. |
Che X J. The study on clean combustion of oily sludge[D]. Xi'an: Xi'an Shiyou University, 2017. | |
20 | 杨豪, 刘磊. 含油污泥处理技术研究现状[J]. 石油化工应用, 2017, 36(11): 6-11, 15. |
Yang H, Liu L. Research status of oily sludge treatment technology[J]. Petrochemical Industry Application, 2017, 36(11): 6-11, 15. | |
21 | 王磊. 市政污泥脱水干化及粘滞特性变化规律研究[D]. 上海:东华大学, 2018. |
Wang L. Study on the change rules of the dehydration, drying and viscous properties of municipal sludge[D]. Shanghai: Donghua University, 2018. | |
22 | Liu Y C, Wang M R, Chen M Y, et al. Facilitating the natural semi-drying of oily sludge by changing the form of water[J]. PLoS One, 2021, 16(1): e0245430. |
23 | Tang Q Y, Xing J X, Sun Z Q, et al. Enhancing the dewaterability of oily cold rolling mill sludge using quicklime as a conditioning agent[J]. ACS Omega, 2022, 7(48): 44278-44286. |
24 | Zhao L J, Yang J H, Wang S S, et al. CO-drying characteristics of sticky sewage sludge pre-conditioned with biomass and coal[J]. Drying Technology, 2020, 38(15): 2083-2093. |
25 | Léonard A, Meneses E, Le Trong E, et al. Influence of back mixing on the convective drying of residual sludges in a fixed bed[J]. Water Research, 2008, 42(10/11): 2671-2677. |
26 | Liu H, Liu P, Hu H Y, et al. Combined effects of Fenton peroxidation and CaO conditioning on sewage sludge thermal drying[J]. Chemosphere, 2014, 117: 559-566. |
27 | 郑凯, 仇凯. 采用石灰、明矾进行含油污泥调质对比研究[J]. 国外油田工程, 2008(11): 50-52. |
Zheng K, Qiu K. Comparative study on conditioning of oily sludge with lime and alum[J]. Foreign Oilfield Engineering, 2008(11): 50-52. | |
28 | 梅静. 污泥粘滞特性的宏观表征和降粘研究[D]. 上海: 东华大学, 2017. |
Mei J. Research on macroscopic representation of sludge sticky characteristics and viscosity reduction[D]. Shanghai: Donghua University, 2017. | |
29 | 杨国友, 石林, 柴妮. 生石灰与微波协同作用对污泥脱水的影响[J]. 环境化学, 2011, 30(3): 698-702. |
Yang G Y, Shi L, Chai N. The effect of calcium oxide combined with microwave on sludge dewatering[J]. Environmental Chemistry, 2011, 30(3): 698-702. | |
30 | 宋薇, 刘建国, 聂永丰. 含油污泥的热解特性研究[J]. 燃料化学学报, 2008, 36(3): 286-290. |
Song W, Liu J G, Nie Y F. Pyrolysis properties of oil sludge[J]. Journal of Fuel Chemistry and Technology, 2008, 36(3): 286-290. | |
31 | 马宏瑞, 吴家强, 许光文, 等. 油田采油污泥的热解动力学及其热解效果研究[J]. 环境工程学报, 2009, 3(5): 932-936. |
Ma H R, Wu J Q, Xu G W, et al. Study on pyrolysis kinetics and efficiency of oil exploitation sludge[J]. Chinese Journal of Environmental Engineering, 2009, 3(5): 932-936. | |
32 | 沈善明. 内加热式流化床干燥器[J]. 医药工程设计, 2004, 25(6): 3-5. |
Shen S M. Internally heated fluidized bed dryer[J]. Pharmaceutical Engineering Design, 2004, 25(6): 3-5. | |
33 | 冯金钻, 陶乐仁, 黄理浩, 等. 政污泥干燥特性的实验研究和模拟分析[J]. 能源研究与信息, 2021, 37(1): 10-16. |
Feng J Z, Tao L R, Huang L H, et al. Experimental study and simulation analysis on drying characteristics of municipal sludge[J]. Energy Research and Information, 2021, 37(1): 10-16. | |
34 | 孔令波, 杨兴, 董继先, 等. 纸污泥薄层干燥模型的研究进展[J]. 中国造纸, 2019, 38(11): 70-75. |
Kong L B, Yang X, Dong J X, et al. Research progress of thin-layer drying model for paper sludge[J]. China Pulp & Paper, 2019, 38(11): 70-75. | |
35 | 张绪坤, 刘胜平, 吴青荣, 等. 泥低温干燥动力学特性及干燥参数优化[J]. 农业工程学报, 2017, 33(17): 216-223. |
Zhang X K, Liu S P, Wu Q R, et al. Drying kinetics and parameters optimization of sludge drying at low temperature[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(17): 216-223. | |
36 | Hendorson S M. Grain drying theory (Ⅰ): Temperature effect on drying coefficient[J]. Journal of Agricultural Engineering Research, 1961, 6: 169-174. |
37 | Zhu A S, Shen X Q. The model and mass transfer characteristics of convection drying of peach slices[J]. International Journal of Heat and Mass Transfer, 2014, 72: 345-351. |
38 | Page G E. Factors influencing the maximum rates of air drying shelled corn in thin layers[D]. West Lafayette, IN, USA: Purdue University, 1949. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 243
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 200
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||