CIESC Journal ›› 2014, Vol. 65 ›› Issue (7): 2504-2512.DOI: 10.3969/j.issn.0438-1157.2014.07.012
Previous Articles Next Articles
LUO Qin1,2, ZHAO Yinfeng1, YE Mao1, LIU Zhongmin1
Received:
2014-04-02
Revised:
2014-04-24
Online:
2014-07-05
Published:
2014-07-05
Supported by:
supported by the National Natural Science Foundation of China (91334205).
罗琴1,2, 赵银峰1, 叶茂1, 刘中民1
通讯作者:
叶茂
基金资助:
国家自然科学基金项目(91334205)。
CLC Number:
LUO Qin, ZHAO Yinfeng, YE Mao, LIU Zhongmin. Application of electrical capacitance tomography for gas-solid fluidized bed measurement[J]. CIESC Journal, 2014, 65(7): 2504-2512.
罗琴, 赵银峰, 叶茂, 刘中民. 电容层析成像在气固流化床测量中的应用[J]. 化工学报, 2014, 65(7): 2504-2512.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.3969/j.issn.0438-1157.2014.07.012
[1] | Huang S M, Plaskowski A, Xie C G, Beck M S. Tomographic imaging of two component flow using capacitance sensors [J]. J. Phys. E: Sci. Instrum., 1989, 22: 173-177 |
[2] | Du B, Fan L S, Wei F, Warsito W. Gas and solids mixing in a turbulent fluidized bed [J]. AIChE Journal, 2002, 48: 1896-1909 |
[3] | Yang W Q. Hardware design of electrical capacitance tomography systems [J]. Meas. Sci. Technol., 1996, 7: 225-232 |
[4] | Yang W Q. Design of electrical capacitance tomography sensors [J]. Meas. Sci. Technol., 2010, 21: 1-13 |
[5] | Yang W Q, Peng L H. Image reconstruction algorithms for electrical capacitance tomography [J].Meas. Sci. Technol., 2003, 14: R1-R13 |
[6] | Dyakowski T, Edwards R B, Xie C G, Williams R A. Application of capacitance tomography to gas-solid flows [J]. Chemical Engineering Science, 1997, 52: 2099-2110 |
[7] | Dyakowski T, Jeanmeure L F C,Jaworski A J. Applications of electrical tomography for gas-solids and liquid-solids flows—a review [J]. Powder Technology, 2000, 112: 174-192 |
[8] | Zhang W B, Wang C, Yang W Q, Wang C H. Application of electrical capacitance tomography in particulate process measurement—a review [J]. Advanced Powder Technology (in press) |
[9] | Liu S, Yan R S, Wang H G, Jiang F, Dong X Y. Applications of electrical capacitance tomography in two-phase flow visualization [J]. Journal of Thermal Science, 2004, 13: 179-186 |
[10] | Liu S, Chen Q, Wang H G, Jiang F, Ismail I, Yang W Q. Electrical capacitance tomography for gas-solids flow measurement for circulating fluidized beds [J]. Flow Measurement and Instrumentation, 2005, 16: 135-144 |
[11] | Hadi B. Characterization of multi-phase flow in circulating fluidized beds using electrical capacitance tomography (ECT) [D]. Canada: The University of Western Ontario, 2009 |
[12] | Malcus S, Chaplin G, Pugsley T. The hydrodynamics of the high-density bottom zone in a CFB riser analyzed by means of electrical capacitance tomography [J]. Chemical Engineering Science, 2000, 55: 4129-4138 |
[13] | Du B, Warsito W, Fan L S. Behavior of the dense-phase transportation regime in a circulating fluidized bed [J]. Ind. Eng. Chem. Res., 2006, 45: 3741-3751 |
[14] | Sidorenko I, Rhodes M J. Influence of pressure on fluidization properties [J]. Powder Technology, 2004, 141: 137 -154 |
[15] | Cao J T, Cheng Z H, Fang Y T, Jing H M, Huang J J, Wang Y. Simulation and experimental studies on fluidization properties in a pressurized jetting fluidized bed [J]. Powder Technology, 2008, 183:127-132 |
[16] | Wang F, Yu Z, Marashdeh Q, Fan L S. Horizontal gas and gas/solid jet penetration in a gas-solid fluidized bed [J]. Chemical Engineering Science, 2010, 65: 3394-3408 |
[17] | Chen Qi (陈琪), Li Jingtao (李惊涛), Liu Shi (刘石).The ECT measurement of thin cayer matter distribution in the two-phase flow [J]. Industrial Heating (工业加热), 2006, 35: 24-26 |
[18] | Chen Qi (陈琪), Liu Shi (刘石), Yan Runsheng (阎润生). Measurement investigation on solids distribution in down-flow fluidized bed using ECT [J]. Journal of Thermal Science and Technology (热科学与技术), 2007, 6: 162-166 |
[19] | Wang F. Gas-solid fluidization: ECVT imaging and mini-/micro-channel [D]. USA: The Ohio State University, 2010 |
[20] | Du B, Fan L S. Characteristics of choking behavior in circulating fluidized beds for group B particles [J]. Ind. Eng. Chem. Res., 2004, 43: 5507-5520 |
[21] | Du B, Warsito W, Fan L S. ECT studies of the choking phenomenon in a gas-solid circulating fluidized bed [J]. AIChE Journal, 2004, 50: 1386-1405 |
[22] | Du B, Warsito W, Fan L S. Imaging the choking transition in gas-solid risers using electrical capacitance tomography [J]. Ind. Eng. Chem. Res., 2006, 45: 5384-5395 |
[23] | White R B. Using electrical capacitance tomography to monitor gas voids in a packed bed of solids [J]. Meas. Sci. Technol., 2002, 13: 1842-1847 |
[24] | White R B. Using electrical capacitance tomography to investigate gas solid contacting [J]. The Canadian Journal of Chemical Engineering, 2005, 83: 64-67 |
[25] | Rautenbach C, Melaaen M C, Halvorsen B M. Statistical diagnosis of a gas-solid fluidized bed using electrical capacitance tomography [J]. International Journal of Multiphase Flow, 2013, 49: 70-77 |
[26] | Wang C P, Lü Z A, Li D K. Experimental study on gas-solids flows in a circulating fluidised bed using electrical capacitance tomography [J]. Powder Technology, 2008, 185: 144-151 |
[27] | Liu S, Yang W Q, Wang H G, Jiang F, Su Y. Investigation of square fluidized beds using capacitance tomography: preliminary results [J]. Meas. Sci. Technol., 2001, 12: 1120-1125 |
[28] | Liu S, Yang W Q, Wang H G, Yan G, Pan Z. Flow pattern identification of fluidized beds using ECT [J]. Journal of Thermal Science, 2001, 2: 176-181 |
[29] | Makkawi Y T, Wright P C. Fluidization regimes in a conventional fluidized bed characterized by means of electrical capacitance tomography [J]. Chemical Engineering Science, 2002, 57: 2411-2437 |
[30] | Wang H G, Yang W Q, Dyakowski T, Liu S. Study of bubbling and slugging fluidized beds by simulation and ECT [J]. AIChE Journal, 2006, 52: 3078-3085 |
[31] | Du B, Warsito W, Fan L S. ECT studies of gas-solid fluidized beds of different diameters [J]. Ind. Eng .Chem. Res., 2005, 44: 5020-5030 |
[32] | Yang W Q, Liu S. Role of tomography in gas/solids flow measurement [J]. Flow Measurement and Instrumentation, 2000, 11: 237-244 |
[33] | Wang H G, Liu S, Jiang F, Yang W Q. Dual-plane electrical capacitance system and usage in experience[J]. Instrument Technique and Sensor, 2002, 2: 3-6 |
[34] | Sun Meng (孙猛), Liu Shi (刘石), Lei Jing (雷兢), Liu Jing (刘靖). Concentration and angular velocity measurement in the dipleg of a cyclone separator using ECT [J]. Journal of Basic Science and Engineering (应用基础与工程科学学报), 2008, 16: 757-761 |
[35] | Makkawi Y, Ocone R. Integration of ECT measurements with hydrodynamic modeling of conventional gas-solid bubbling bed [J]. Chemical Engineering Science, 2007, 62: 4304-4315 |
[36] | Wang H G, Yang W Q. Measurement of fluidised bed dryer by different frequency and different normalization methods with electrical capacitance tomography [J]. Powder Technology, 2010, 199: 60-69 |
[37] | Chaplin G, Pugsley T. Application of electrical capacitance tomography to the fluidized bed drying of pharmaceutical granule [J]. Chemical Engineering Science, 2005, 60: 7022-7033 |
[38] | Diks C, van Zwet W R, Takens F, De Goede J. Detecting differences between delay vector distributions [J]. Physical Review E, 1996, 53: 2169-2176 |
[39] | van Ommen J R, Coppens M C, van Den Bleek C M. Early warning of agglomeration in fluidized beds by attractor comparison [J]. AIChE Journal, 2000, 46: 2183-2197 |
[40] | van Ommen J R. Monitoring fluidized bed hydrodynamics [D]. Netherlands: Delft University of Technology, 2001 |
[41] | Makkawi Y, Ocone R. Mass transfer coefficient for drying of moist particulate in a bubbling fluidized bed [J]. Chem. Eng. Technol., 2009, 32 (1): 64-72 |
[42] | Chaplin G. Monitoring fluidized bed dryer hydrodynamics using pressure fluctuations and electrical capacitance tomography [D]. Canada: University of Brunswick, 2001 |
[43] | Tanfara H, Pugsley T, Winters C. Effect of particle size distribution on local voidage in a bench-scale conical fluidized bed dryer [J]. Drying Technology, 2002, 20: 1273-1289 |
[44] | Rimpiläinen V, Heikkinen L M, Vauhkonen M. Moisture distribution and hydrodynamics of wet granules during fluidized-bed drying characterized with volumetric electrical capacitance tomography [J]. Chemical Engineering Science, 2012, 75: 220-234 |
[45] | Wang H G, Yang W Q, Senior P, Raghavan R S, Duncan S R. Investigation of batch fluidized-bed drying by mathematical modeling, CFD simulation and ECT measurement [J]. AIChE Journal, 2008, 54: 427-443 |
[46] | Wang H G, Senior P R, Mann R, Yang W Q. Online measurement and control of solids moisture in fluidised bed dryers [J]. Chemical Engineering Science, 2009, 64: 2893-2902 |
[47] | Pugsley T, Tanfara H, Malcus S, Cuib H, Chaouki J, Winters C. Verification of fluidized bed electrical capacitance tomography measurements with a fibre optic probe [J]. Chemical Engineering Science, 2003, 58: 3923-3934 |
[48] | Chandrasekera T C, Wang A, Holland D J, Marashdeh Q, Pore M, Wang F, Sederman A J, Fan L S, Gladden L F, Dennis J S. A comparison of magnetic resonance imaging and electrical capacitance tomography: an air jet through a bed of particles [J]. Powder Technology, 2012, 227: 86-95 |
[49] | Marashdeh Q, Warsito W, Fan L S, Teixeira F. Dual imaging modality of granular flow based on ECT sensors [J]. Granular Matter, 2008, 10: 75-80 |
[50] | Zhang W B, Cheng Y P, Wang C, Yang W Q, Wang C H. Investigation on hydrodynamics of triple-bed combined circulating fluidized bed using electrostatic sensor and electrical capacitance tomography [J]. Ind. Eng. Chem. Res., 2013, 52: 11198-11207 |
[1] | Xianheng YI, Wu ZHOU, Xiaoshu CAI, Tianyi CAI. Measurable range of nanoparticle concentration using optical fiber backward dynamic light scattering [J]. CIESC Journal, 2023, 74(8): 3320-3328. |
[2] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[3] | Juhui CHEN, Qian ZHANG, Lingfeng SHU, Dan LI, Xin XU, Xiaogang LIU, Chenxi ZHAO, Xifeng CAO. Study on flow characteristics of nanoparticles in a rotating fluidized bed based on DEM method [J]. CIESC Journal, 2023, 74(6): 2374-2381. |
[4] | Yuanyuan ZHANG, Jiangyuan QU, Xinxin SU, Jing YANG, Kai ZHANG. Gas-liquid mass transfer and reaction characteristics of SNCR denitration in CFB coal-fired unit [J]. CIESC Journal, 2023, 74(6): 2404-2415. |
[5] | Zihan YUAN, Shuyan WANG, Baoli SHAO, Lei XIE, Xi CHEN, Yimei MA. Investigation on flow characteristics of wet particles with power-law liquid-solid drag models in fluidized bed [J]. CIESC Journal, 2023, 74(5): 2000-2012. |
[6] | Junxian CHEN, Zhongli JI, Yu ZHAO, Qian ZHANG, Yan ZHOU, Meng LIU, Zhen LIU. Study on online detection method of particulate matter in natural gas pipeline based on microwave technology [J]. CIESC Journal, 2023, 74(3): 1042-1053. |
[7] | Yongqian WANG, Ping WANG, Kang CHENG, Chenlin MAO, Wenfeng LIU, Zhicheng YIN, Antonio Ferrante. Stability and NO production of lean premixed ammonia/methane turbulent swirling flame [J]. CIESC Journal, 2022, 73(9): 4087-4094. |
[8] | Kaiyue WANG, Yongli MA, Chen LI, Mingyan LIU. Gas-liquid mass transfer coefficients in the gas-liquid-solid micro-fluidized beds [J]. CIESC Journal, 2022, 73(8): 3529-3540. |
[9] | Dongwang ZHANG, Hairui YANG, Tuo ZHOU, Zhong HUANG, Shiyuan LI, Man ZHANG. Cold-state experimental study on ash deposition of convection heating surface of biomass boiler [J]. CIESC Journal, 2022, 73(8): 3731-3738. |
[10] | Xinhua LIU, Zhennan HAN, Jian HAN, Bin LIANG, Nan ZHANG, Shanwei HU, Dingrong BAI, Guangwen XU. Principle and technology of low-NO x decoupling combustion based on restructuring reactions [J]. CIESC Journal, 2022, 73(8): 3355-3368. |
[11] | Gang WANG, Zhihao XIA, Xiyan LI, Hong ZHANG, Zhennan HAN, Xingfei SONG, Guangwen XU. Effect of atmosphere on active performance of light-burned magnesium oxides from calcined magnesite in fluidized bed [J]. CIESC Journal, 2022, 73(8): 3699-3707. |
[12] | Lianfeng ZHU, Chao WANG, Mengjuan ZHANG, Fangzheng LIU, Xin JIA, Ping AN, Guangwen XU, Zhennan HAN. Fluidized bed two-stage gasification of coal with steam/O2 for production of low-tar syngas [J]. CIESC Journal, 2022, 73(8): 3720-3730. |
[13] | Chenyang ZHOU, Ying JIA, Yuemin ZHAO, Yong ZHANG, Zhijie FU, Yuqing FENG, Chenlong DUAN. Intensification of dry dense medium fluidization separation process from a mesoscale perspective [J]. CIESC Journal, 2022, 73(6): 2452-2467. |
[14] | Yongli MA, Mingyan LIU, Zongding HU. Development of flow mesoscale modeling of the gas-liquid-solid fluidized beds [J]. CIESC Journal, 2022, 73(6): 2438-2451. |
[15] | Lingfei KONG, Yanpei CHEN, Wei WANG. Dynamic study of mesoscale structures of particles in gas-solid fluidization [J]. CIESC Journal, 2022, 73(6): 2486-2495. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||