[1] |
Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269-271
|
[2] |
Anpo M, Takeuchi M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation[J]. J. Catal., 2003, 216(1/2): 505-516
|
[3] |
Peng Feng(彭峰), Chen Shuihui(陈水辉), Wang Hongjuan(王红娟), Huang Lei(黄垒). Photocatalytic behavior of TiO2 and ZnO prepared with different methods under ultraviolet and visible light irradiation[J]. Journal of Chemical Industry and Engineering (China)(化工学报), 2005, 56(5): 879-882
|
[4] |
Liu X, Pan L K, Lv T, Sun Z, Sun C Q. Enhanced photocatalytic reduction of Cr(Ⅵ) by ZnO-TiO2-CNTs composites synthesized via microwave-assisted reaction[J]. J. Mol. Catal. A: Chem., 2012, 363/364: 417-422
|
[5] |
Herrmann J M. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants[J]. Catal. Today, 1999, 53(1): 115-129
|
[6] |
Chakrabarti S, Dutta B K. Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst[J]. J. Hazard. Mater., 2004, 112(3): 269-278
|
[7] |
Zhang Y Y, Ram M K, Stefanakos E K, Goswami D Y. Synthesis, characterization, and applications of ZnO nanowires[J]. J. Nanomater., 2012, 2012: 1-22
|
[8] |
Zhu L P, Huang W Y, Ma L L, Fu S Y, Yu Y, Jia Z J. Synthesis and characteristics of ZnO-CNTs nanocomposites[J]. Acta Phys. Chim. Sin., 2006, 22(10): 1175-1180
|
[9] |
Saleh T A, Gondal M A, Drmosh Q A, Yamani Z H, AL-yamani A. Enhancement in photocatalytic activity for acetaldehyde removal by embedding ZnO nano particles on multiwall carbon nanotubes[J]. Chem. Eng. J., 2011, 166(1): 407-412
|
[10] |
Wang X J, Yao S W, Li X B. Sol-gel preparation of CNT/ZnO nanocomposite and its photocatalytic property[J]. Chin. J. Chem., 2009, 27(7): 1317-1320
|
[11] |
Zhu L P, Liao G H, Huang W Y, Ma L L, Yang Y,Yu Y, Fu S Y. Preparation, characterization and photocatalytic properties of ZnO-coated multi-walled carbon nanotubes[J]. Mater. Sci. Eng., B, 2009, 163(3): 194-198
|
[12] |
Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56-58
|
[13] |
Tans S J, Devore M H, Dai H J, Thess A, Smalley R E, Geerligs L J, Dekker C. Individual single-wall carbon nanotubes as quantum wires[J]. Nature, 1997, 386: 474-477
|
[14] |
Bockrath M, Cobden D H, McEuen P L, Chopra N G, Zettl A, Thess A, Smalley R E. Single-electron transport in ropes of carbon nanotubes[J]. Science, 1997, 275(5308): 1922-1925
|
[15] |
Gao L, Jiang L Q. Fabrication and characterization of ZnO-coated multi-walled carbon nanotubes with enhanced photocatalytic activity[J]. Mater. Chem. Phys., 2005, 91(2/3): 313-316
|
[16] |
Xu J, Song X J, Wei X W. Study on photocatalytic decomposition of azo-dyes by ZnO/carbon nanotubes composites by UV-Vis spectroscopy[J]. Spectrosc. Spect. Anal., 2007, 27(12): 2510-2513
|
[17] |
Saleh T A, Gondal M A, Drmosh Q A. Preparation of a MWCNT/ZnO nanocomposite and its photocatalytic activity for the removal of cyanide from water using a laser[J]. Nanotechnology, 2010, 21: 495705-495712
|
[18] |
Samadi M, Shivaee H A, Zanetti M, Pourjavadi A, Moshfegh A. Visible light photocatalytic activity of novel MWCNT-doped ZnO electrospun nanofibers[J]. J. Mol. Catal. A: Chem., 2012, 359: 42-48
|
[19] |
Chen C S, Liu T G, Lin L W, Xie X D, Chen X H, Liu Q C, Liang B, Yu W W, Qiu C Y. Multi-walled carbon nanotube-supported metal-doped ZnO nanoparticles and their photocatalytic property[J]. J. Nanopart. Res., 2013, 15: 1295-1303
|
[20] |
Lü X, Du F, Ma Y F, Wu Q, Chen Y S. Synthesis of high quality single-walled carbon nanotubes at large scale by electric arc using metal compounds[J]. Carbon, 2005, 43: 2020-2022
|
[21] |
Lu Y H, Yang X Y, Ma Y F, Huang Y, Chen Y S. A novel nanohybrid of daunomycin and single-walled carbon nanotubes: photophysical properties and enhanced electrochemical activity[J]. Biotechnol. Lett., 2008, 30: 1031-1035
|
[22] |
Yang X Y, Lu Y H, Ma Y F, Liu Z F, Du Feng, Chen Y S. DNA electrochemical sensor based on an adduct of single-walled carbon nanotubes and ferrocene[J]. Biotechnol. Lett., 2007, 29: 1775-1779
|
[23] |
Krissanasaeranee M, Wongkasemjit S, Cheetham A K, Eder D. Complex carbon nanotube-inorganic hybrid materials as next-generation photocatalysts[J]. Chem. Phys. Lett., 2010, 496(1/2/3): 133-138
|
[24] |
Yang X Y, Lu Y H, Ma Y F, Li Y J, Du F, Chen Y S. Noncovalent nanohybrid of ferrocene with single-walled carbon nanotubes and its enhanced electrochemical property [J]. Chem. Phys. Lett., 2006, 420(4/5/6): 416-420
|
[25] |
Sin J C, Lam S M, Lee K T, Mohamed A R. Self-assembly fabrication of ZnO hierarchical micro/nanospheres for enhanced photocatalytic degradation of endocrine-disrupting chemicals[J]. Mater. Sci. Semicond. Process., 2013, 16(6): 1542-1550
|
[26] |
Kinadjian N, Achard M F, Julián-López B, Maugey M, Poulin P, Prouzet E, Backov Rénal. ZnO/PVA macroscopic fibers bearing anisotropic photonic properties[J]. Adv. Funct. Mater., 2012, 22(19): 3994-4003
|
[27] |
Li N, Huang Y, Du F, Ma Y F, Li F F, Chen Y S, Eklund P C. Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites[J]. Nano Lett., 2006, 6(6): 1141-1145
|