[1] |
Jackson J E. A User's Guide to Principal Components [M]. New York: Wiley, 1991
|
[2] |
Geladi P, Kowalshi B R. Partial least squares regression: a tutorial [J]. Analytica Chimica Acta, 1986, 185 (1): 1-17
|
[3] |
Hoskuldsson A. PLS regression methods [J]. Journal of Chemo-metrics, 1988, 2 (3): 211-228
|
[4] |
Jia Runda (贾润达), Mao Zhizhong (毛志忠), Wang Fuli (王福利). KPLS model based product quality control for batch processes [J].CIESC Journal (化工学报), 2013, 64 (4): 1332-1339
|
[5] |
Li Yunfeng, Wang Zhifeng, Yuan Jingqi. On-line fault detection using SVM-based dynamic MPLS for batch processes [J]. Chinese J. Chem.Eng., 2006, 14 (6): 754-758
|
[6] |
Wold S, Geladi P, Esbensen K, Öhman J. Multi-way principal components- and PLS-analysis [J]. Journal of Chemometrics, 1987, 1 (1): 41-56
|
[7] |
Nomikos P, MacGregor J F. Monitoring batch process using multiway principal component analysis [J]. AIChE Journal, 1994, 40 (8): 1361-1375
|
[8] |
Nomikos P, MacGregor J F. Multi-way partial least squares in monitoring batch processes [J]. Chemometrics and Intelligent Laboratory System, 1995, 30 (1): 97-108
|
[9] |
Lu Ningyun (陆宁云), Wang Fuli (王福利), Gao Furong (高福荣), Wang Shu (王姝). Statistical modeling and online monitoring for batch processes [J]. Acta Automatica Sinica (自动化学报), 2006, 32 (3): 400-410
|
[10] |
Smilde A K. Comments on three-way analyses used for batch process data [J]. Journal of Chemometrics, 2001, 15 (1): 19-27
|
[11] |
Louwerse D J, Smilde A K. Multivariate statistical process control of batch processes based on three-way models [J]. Chemical Engineering Science, 2002, 55:1225-1235
|
[12] |
Bro R. Multiway calibration. Multilinear PLS [J]. Journal of Chemometrics, 1996, 10: 47-61
|
[13] |
Zhao Qibin, Mandic P, Zenas C Chao, Yasuo Nagasaka, Naotaka Fujii, Zhang Liqing, Andrzej Cichocki. Higher order partial least squares (HOPLS): a generalized multilinear regression method [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35 (7): 1660-1673
|
[14] |
Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS) [J]. Journal of Chemometrics, 2002, 16 (3): 19-128
|
[15] |
Kolda T. Multilinear operators for higher-order decompositions technical report [R]. SAND2006-2081, Sandia National Laboratories, Albuquerque N M, Livermore, Calif., 2006
|
[16] |
Lathauwer L De. Decompositions of a higher-order tensor in block terms (Ⅱ): Definitions and uniqueness [J]. SIAM Journal on Matrix Analysis Applications, 2008, 30 (3): 1033-1066
|
[17] |
Kolda T, Bader T. Tensor decompositions and applications [J]. SIAM Rev., 2009, 51 (3): 455-500
|
[18] |
Lathauwer L De, Moor B De, Vandewalle J.On the best rank-1 and rank-(R1, R2,..., RN) approximation of higher-order tensors [J]. SIAM Journal on Matrix Analysis and Applications, 2000, 21 (4): 1324-1342
|
[19] |
Lathauwer L De, Moor B De, Vandewalle J. A multilinear singular value decomposition [J]. SIAM Journal on Matrix Analysis and Applications, 2000, 21 (4): 1253-1278
|
[20] |
Birol G, Undey C, Cinar A. A modular simulation package for fed-batch fermentation: penicillin production [J]. Computers and Chemical Engineering, 2002, 26 (11): 1553-1565
|
[21] |
Hong Jeong Jin, Zhang Jie. Quality prediction for a fedbatch fermentation process using multi-block PLS [J]. Springer Proceedings in Physics, 2010, 135: 155-162
|