[1] |
Zhu Qunxiong(朱群雄), Ma Dexian(麻德贤). Recognition of neural network process model [J]. Journal of Chemical Industry and Engineering(China)(化工学报), 1997, 48(5): 547-552
|
[2] |
Ljung L, Hjalmarsson H. Four encounters with system identification [J]. Eur. J. Control, 2011, 17(5/6): 449-471
|
[3] |
Söderström T. System identification for the errors-in-variables problem [J]. Trans. Inst. Meas. Control, 2012, 34: 780-792
|
[4] |
Hong X, Mitchell R J, Chen S, Harris C J, Li K, Irwin G W. Model selection approaches for non-linear system identification: a review [J]. Int. J. Syst. Sci., 2008, 39: 925-946
|
[5] |
Zhu Y C. Multivariable System Identification for Process Control[M]. United Kingdom: Elsevier Science & Technology Books, 2001
|
[6] |
Narendra K S, Parthasarathy K. Identification and control of dynamical systems using neural networks [J]. IEEE Trans. Neural Networks, 1990(1): 4-27
|
[7] |
Liu Y, Chen J. Correntropy kernel learning for nonlinear system identification with outliers [J]. Ind. Eng. Chem. Res., 2014, 53(13): 5248-5260
|
[8] |
Huang G B, Zhu Y, Siew C K. Extreme learning machine: theory and applications [J]. Neurocomputing, 2006, 70: 489-501
|
[9] |
Huang G B, Wang D H, Lan Y. Extreme learning machines: a survey [J]. Int. J. Mach. Learn. & Cyber., 2011, 2: 107-122
|
[10] |
Huang G B, Chen L. Convex incremental extreme learning machines [J]. Neurocomputing, 2007, 70: 3056-3062
|
[11] |
Feng G, Huang G B, Lin Q P. Error minimized extreme learning machine with growth of hidden nodes and incremental learning [J]. IEEE Trans. Neural Networks, 2009, 20(8): 1352-1356
|
[12] |
Miche Y, Sorjamaa A, Bas P. OP-ELM: optimally pruned extreme learning machine [J]. IEEE Trans. Neural Networks, 2010, 21(1): 570-578
|
[13] |
Huang G B, Li M B, Chen L. Incremental extreme learning machine with fully complex hidden nodes [J]. Neurocomputing, 2008, 71: 1-7
|
[14] |
Huang G B, Zhou H M, Ding X J Extreme learning machine for regression and multiclass classification [J]. IEEE Trans. Syst., Man, Cybern. B, Cybern., 2012, 42(2): 513-529
|
[15] |
Golub G H, Heath M, Wahha G. Generalize cross-validation as a method for choosing a good ridge parameter [J]. Technometrics, 1979, 21(2): 215-223
|
[16] |
Yu Q, Miche Y. Rugularized extreme learning machine for regression with missing data [J]. Neurocomputing, 2013, 102: 45-51
|
[17] |
Liu Y, Wang H Q, Yu J, Li P. Selective recursive kernel learning for online identification of nonlinear systems with NARX form [J]. J. Process Control, 2010, 20(2): 181-194
|
[18] |
Liu Xueyi(刘学艺), Li Ping(李平), Gao Chuanhou(郜传厚). Fast leave one out cross validation algorithm of extreme learning machine [J]. J. Shanghai Jiao Tong Univ.(上海交通大学学报), 2011, 45(8): 1140-1145
|
[19] |
Nikravesh M, Farell1 A E, Stanford T G. Control of nonisothermal CSTR with time-varying parameters via dynamic neural network control (DNNC) [J]. Chem. Eng. J., 2000, 76(1): 1-16
|
[20] |
ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/espinosa/datasets/cstr.Dat [DB]
|