1 |
Gungor A. Simulation of NO x emission in circulating fluidized beds burning low-grade fuels[J]. Energy & Fuels, 2009, 23(5): 2475-2481.
|
2 |
Gungor A. One dimensional numerical simulation of small scale CFB combustors[J]. Energy Conversion and Management, 2009, 50(3): 711-722.
|
3 |
Wu H C, Yang C, He H X, et al. A hybrid simulation of a 600 MW supercritical circulating fluidized bed boiler system[J]. Applied Thermal Engineering, 2018, 143: 977-987.
|
4 |
Ke X W, Li D F, Li Y R, et al. 1-Dimensional modelling of in-situ desulphurization performance of a 550 MWe ultra-supercritical CFB boiler[J]. Fuel, 2021, 290: 120088.
|
5 |
毛玉如. 循环流化床富氧燃烧技术的试验和理论研究[D]. 杭州: 浙江大学, 2003.
|
|
Mao Y R. Theoretical and experimental study on oxygen-enriched combustion technology in circulating fluidized bed[D]. Hangzhou: Zhejiang University, 2003.
|
6 |
魏莉, 钟文琪, 邵应娟. 煤流化床加压富氧燃烧过程的动态特性[J]. 东南大学学报(自然科学版), 2020, 50(2): 358-367.
|
|
Wei L, Zhong W Q, Shao Y J. Dynamic characteristics of pressurized oxy-fuel combustion in fluidized bed[J]. Journal of Southeast University (Natural Science Edition), 2020, 50(2): 358-367.
|
7 |
戚龙周. 600MW超临界直流锅炉热力性能建模与仿真研究[D]. 武汉: 华中科技大学, 2012.
|
|
Qi L Z. Modeling and simulation research on thermodynamic performances of 600MW supercritical once through boiler[D]. Wuhan: Huazhong University of Science and Technology, 2012.
|
8 |
Magnanelli E, Tranås O L, Carlsson P, et al. Dynamic modeling of municipal solid waste incineration[J]. Energy, 2020, 209: 118426.
|
9 |
谢海立. 垃圾焚烧炉排炉的炉内过程动态特性数字仿真[D]. 南京: 东南大学, 2017.
|
|
Xie H L. Numerical simulation on the dynamic characteristics of combustion in mechanical grate incinerator[D]. Nanjing: Southeast University, 2017.
|
10 |
Jensen L S. NO x from cement production-reduction by primary measures[D]. Denmark: Technical University of Denmark, 1999.
|
11 |
Iliuta I, Dam-Johansen K, Jensen L S. Mathematical modeling of an in-line low-NO x calciner[J]. Chemical Engineering Science, 2002, 57(5): 805-820.
|
12 |
Iliuta I, Dam-Johansen K, Jensen A, et al. Modeling of in-line low-NO x calciners—a parametric study[J]. Chemical Engineering Science, 2002, 57(5): 789-803.
|
13 |
Iliuta I, Dam-Johansen K, Jensen A. Modelling of in-line low-NO x calciners-NO x emission[J]. Chemical Engineering Research and Design, 2003, 81(5): 537-548.
|
14 |
Nieuwland J J, Delnoij E, Kuipers J A M, et al. An engineering model for dilute riser flow[J]. Powder Technology, 1997, 90(2): 115-123.
|
15 |
Fellaou S, Harnoune A, Seghra M A, et al. Statistical modeling and optimization of the combustion efficiency in cement kiln precalciner[J]. Energy, 2018, 155: 351-359.
|
16 |
Hao X C, Guo T T, Huang G L, et al. Energy consumption prediction in cement calcination process: a method of deep belief network with sliding window[J]. Energy, 2020, 207: 118256.
|
17 |
Hao X C, Xu Q Q, Shi X, et al. Prediction of nitrogen oxide emission concentration in cement production process: a method of deep belief network with clustering and time series[J]. Environmental Science and Pollution Research International, 2021, 28(24): 31689-31703.
|
18 |
He W, Li J F, Tang Z H, et al. A novel hybrid CNN-LSTM scheme for nitrogen oxide emission prediction in FCC unit[J]. Mathematical Problems in Engineering, 2020, 2020: 8071810.
|
19 |
Hvala N, Kocijan J. Design of a hybrid mechanistic/Gaussian process model to predict full-scale wastewater treatment plant effluent[J]. Computers & Chemical Engineering, 2020, 140: 106934.
|
20 |
Bangi M S F, Kwon J S I. Deep hybrid modeling of chemical process: application to hydraulic fracturing[J]. Computers & Chemical Engineering, 2020, 134: 106696.
|
21 |
Bhadriraju B, Bangi M S F, Narasingam A, et al. Operable adaptive sparse identification of systems: application to chemical processes[J]. AIChE Journal, 2020, 66(11): e16980.
|
22 |
Nielsen R F, Nazemzadeh N, Sillesen L W, et al. Hybrid machine learning assisted modelling framework for particle processes[J]. Computers & Chemical Engineering, 2020, 140: 106916.
|
23 |
华丰, 方舟, 邱彤. 乙烯裂解炉反应与传热耦合的智能混合建模与模拟[J]. 化工学报, 2018, 69(3): 923-930.
|
|
Hua F, Fang Z, Qiu T. Recirculation and reaction hybrid intelligent modeling and simulation for industrial ethylene cracking furnace[J]. CIESC Journal, 2018, 69(3): 923-930.
|
24 |
von Stosch M, Oliveira R, Peres J, et al. Hybrid semi-parametric modeling in process systems engineering: past, present and future[J]. Computers & Chemical Engineering, 2014, 60: 86-101.
|
25 |
Venkatasubramanian V. The promise of artificial intelligence in chemical engineering: is it here, finally? [J]. AIChE Journal, 2019, 65(2): 466-478.
|
26 |
Zendehboudi S, Rezaei N, Lohi A. Applications of hybrid models in chemical, petroleum, and energy systems: a systematic review[J]. Applied Energy, 2018, 228: 2539-2566.
|
27 |
Hill S C, Smoot L D. Modeling of nitrogen oxides formation and destruction in combustion systems[J]. Progress in Energy and Combustion Science, 2000, 26(4/5/6): 417-458.
|
28 |
Yang Y, Zhang Y, Li S J, et al. Numerical simulation of low nitrogen oxides emissions through cement precalciner structure and parameter optimization[J]. Chemosphere, 2020, 258: 127420.
|
29 |
Mickley H S, Trilling C A. Heat transfer characteristics of fluidized beds[J]. Industrial & Engineering Chemistry, 1949, 41(6): 1135-1147.
|
30 |
苏亚欣, 骆仲泱, 岑可法. 循环流化床颗粒团更新传热模型的修正[J]. 动力工程, 2001, 21(5): 1426-1429, 1416.
|
|
Su Y X, Luo Z Y, Cen K F. Modification to the CFB cluster-renewal heat transfer model[J]. Power Engineering, 2001, 21(5): 1426-1429, 1416.
|
31 |
Smoot L D, Smith P J. Coal Combustion and Gasification[M]. New York: Plenum Press, 1985.
|
32 |
Liu Z C, Zhong W Q, Shao Y J, et al. Exergy analysis of supercritical CO2 coal-fired circulating fluidized bed boiler system based on the combustion process[J]. Energy, 2020, 208: 118327.
|
33 |
Field M A, Gill D W, Morgan B B, et al. Combustion of Pulverized Coal[M]. Leatherhead: BCURA, 1967.
|
34 |
Zhong W Q, Yu A B, Zhou G W, et al. CFD simulation of dense particulate reaction system: approaches, recent advances and applications[J]. Chemical Engineering Science, 2016, 140: 16-43.
|
35 |
Basu P. Combustion of coal in circulating fluidized-bed boilers: a review[J]. Chemical Engineering Science, 1999, 54(22): 5547-5557.
|
36 |
Mikulčić H, Vujanović M, Duić N. Improving the sustainability of cement production by using numerical simulation of limestone thermal degradation and pulverized coal combustion in a cement calciner[J]. Journal of Cleaner Production, 2015, 88: 262-271.
|
37 |
Fidaros D K, Baxevanou C A, Dritselis C D, et al. Numerical modelling of flow and transport processes in a calciner for cement production[J]. Powder Technology, 2007, 171(2): 81-95.
|
38 |
Mikulčić H, von Berg E, Vujanović M, et al. Numerical modelling of calcination reaction mechanism for cement production[J]. Chemical Engineering Science, 2012, 69(1): 607-615.
|
39 |
胡芝娟, 刘志江, 王世杰. 模拟分解炉中煤焦燃烧生成NO的特性[J]. 化工学报, 2005, 56(3): 545-550.
|
|
Hu Z J, Liu Z J, Wang S J. NO formation from coal char combustion in cement precalciner[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(3): 545-550.
|
40 |
黄来, 陆继东, 李卫杰, 等. 分解炉中NO生成模拟与优化[J]. 化工学报, 2006, 57(11): 2624-2630.
|
|
Huang L, Lu J D, Li W J, et al. Numerical simulation of NO in precalciner and its optimization[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(11): 2624-2630.
|
41 |
胡道和, 徐德龙, 蔡玉良. 气固过程工程学及其在水泥工业中的应用[M]. 武汉: 武汉理工大学出版社, 2003.
|
|
Hu D H. Xu D L, Cai Y L. Gas Solid Process Engineering and Its Application in Cement Industry[M]. Wuhan: Wuhan University of Technology Press, 2003.
|
42 |
金涌. 流态化工程原理[M]. 北京: 清华大学出版社, 2001.
|
|
Jin Y. Fluidization Engineering Principles[M]. Beijing: Tsinghua University Press, 2001.
|
43 |
Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359-366.
|
44 |
李昌勇, 金春强, 胡道和. SLC-S分解炉气固两相运动规律研究[J]. 燃烧科学与技术, 2003, 9(3): 239-243.
|
|
Li C Y, Jin C Q, Hu D H. Synthetic study of the motion patterns of gas and solid phases in SLC-S calciner[J]. Journal of Combustion Science and Technology, 2003, 9(3): 239-243.
|
45 |
李相国, 马保国, 吴贝, 等. 喷腾型分解炉内冷态流场的模拟与优化设计[J]. 哈尔滨工业大学学报, 2009, 41(4): 226-228.
|
|
Li X G, Ma B G, Wu B, et al. Numerical simulation and optimization of cold airflow field in sprayed calciners[J]. Journal of Harbin Institute of Technology, 2009, 41(4): 226-228.
|