[1] |
Mei Guanggui (梅光贵), Wang Derun (王德润), Zhou Jingyuan (周敬元), Wang Hui (王辉). Hydrometallurgy of Zinc (湿法炼锌学) [M]. Changsha: Central South University, 2001.
|
[2] |
Filippou D. Innovative hydrometallurgical processes for the primary processing of zinc [J]. Mineral Processing & Extractive Metallurgy Review, 2004, 25 (3): 205-252.
|
[3] |
Sevens K, Kerstien B, Runkel M. Recent experiences with modern zinc processing technology [J]. Erzmetall, 2003, 56: 91-103.
|
[4] |
Barton G W, Scott A C. Industrial applications of a mathematical model for the zinc electrowinning process [J]. Journal of Applied Electrochemistry, 1994, 24 (5): 377-383.
|
[5] |
Mahon M, Wasik L, Alfantazi A. Development and implementation of a zinc electrowinning process simulation [J]. Journal of the Electrochemical Society, 2012, 159 (8): 486-492.
|
[6] |
Alfantazi A M, Dreisinger D B. The role of zinc and sulfuric acid concentrations on zinc electrowinning from industrial sulfate based electrolyte [J]. Journal of Applied Electrochemistry, 2001, 31 (6): 641-646.
|
[7] |
Yang C H, Deconinck G, Gui W H, Li Y G. An optimal power-dispatching system using neural networks for the electrochemical process of zinc depending on varying prices of electricity [J]. IEEE Transactions on Neural Networks, 2002, 13 (1): 229-236.
|
[8] |
Gui Weihua (桂卫华), Zhang Meiju (张美菊), Yang Chunhua (阳春华), Li Yonggang (李勇刚). Energy consumption optimization of zinc electrolysis process based on hybrid particle swarm algorithm [J]. Control Engineering of China (控制工程). 2009, 16 (6): 748-751.
|
[9] |
Gong Yanhai (公衍海), Zhang Wei (张威), Xiong Zhihua (熊智华). Zinc-ion concentration control based on mechanical model of zinc electrowinning process [J]. CIESC Journal (化工学报), 2013, 64 (12): 4396-4400.
|
[10] |
Liu Z D, Yu X H, Xie G, Lu Y, Hou Y Q, He E. Influence of nickel on cathode process of zinc electrowinning [J]. Hydrometallurgy, 2012, 125: 29-33.
|
[11] |
Herrero D, Arias P L, Güemez B, Barrio V L, Cambra J F, Requies J. Hydrometallurgical process development for the production of a zinc sulphate liquor suitable for electrowinning [J]. Minerals Engineering, 2010, 23 (6): 511-517.
|
[12] |
Adcock P A, Quillinan A, Clark B, Newman M, Adeloju S B. Measurement of polarization parameters impacting on electrodeposit morphology (Ⅱ): Conventional zinc electrowinning solutions [J]. Journal of Applied Electrochemistry, 2004, 34 (8): 771-780.
|
[13] |
Taguchi Masami, Takahashi Hiroki, Nagai Masaya, Aichi Taro, Sato Rie. Characteristics of Pb-based alloy prepared by powder rolling method as an insoluble anode for zinc electrowinning [J]. Hydrometallurgy, 2013, 136: 78-84.
|
[14] |
Zhong Weimin (钟伟民), Li Jie (李杰), Cheng Hui (程辉), Kong Xiangdong (孔祥东), Qian Feng (钱锋). A soft sensor multi-modeling for furnace temperature of gasifier based FCM clustering [J]. CIESC Journal (化工学报), 2012, 63 (12): 3951-3955.
|
[15] |
Zhang B, Yang C H, Zhu H Q, Li Y G, Gui W H. Kinetic modeling and parameter estimation for competing reactions in copper removal process from zinc sulfate solution [J]. Industrial & Engineering Chemistry Research, 2013, 52 (48): 17074-17086.
|
[16] |
Cong Qiumei (丛秋梅), Yuan Mingzhe (苑明哲), Chai Tianyou (柴天佑), Wang Hong (王宏). Online modeling for multi-model by adjusting the centers of operating ranges [J]. Control Theory & Applications (控制理论与应用), 2013, 30 (6): 773-780.
|
[17] |
Takagi T, Sugeno M. Fuzzy identification of system identification to modeling and control [J]. IEEE Transactions on SMC, 1985, 15 (1): 116-132.
|
[18] |
Shahraz A, Boozarjomehry R Bozorgmehry. A fuzzy sliding model control approach for nonlinear chemical process [J]. Control Engineering Practice, 2009, 17 (5): 541-550.
|