CIESC Journal ›› 2021, Vol. 72 ›› Issue (3): 1512-1520.DOI: 10.11949/0438-1157.20201804
• Process system engineering • Previous Articles Next Articles
Received:
2020-12-07
Revised:
2020-12-15
Online:
2021-03-05
Published:
2021-03-05
Contact:
XU Bin
通讯作者:
徐斌
基金资助:
CLC Number:
XU Bin. Parameter optimal identification of proton exchange membrane fuel cell model based on an improved differential evolution algorithm[J]. CIESC Journal, 2021, 72(3): 1512-1520.
徐斌. 基于改进差分进化算法的质子交换膜燃料电池模型参数优化识别[J]. 化工学报, 2021, 72(3): 1512-1520.
Add to citation manager EndNote|Ris|BibTeX
函数 | 算法 | 最小值 | 最大值 | 中位值 | 平均值 | 标准差 |
---|---|---|---|---|---|---|
Fsph | DE | 3.024×10-5 | 1.372×10-4 | 6.460×10-5 | 6.897×10-5 | 3.124×10-5 |
IDE | 9.946×10-15 | 3.052×10-13 | 3.161×10-14 | 5.171×10-14 | 5.979×10-14 | |
Fros | DE | 4.392×101 | 6.439×102 | 9.895×101 | 1.707×102 | 1.564×102 |
IDE | 2.521×101 | 1.033×102 | 2.597×101 | 3.816×101 | 2.545×101 | |
Fack | DE | 1.322×10-3 | 2.871×10-3 | 2.188×10-3 | 2.135×10-3 | 4.463×10-4 |
IDE | 3.023×10-8 | 1.217×10-7 | 6.460×10-8 | 6.870×10-8 | 2.363×10-8 | |
Fgwr | DE | 8.075×10-5 | 1.080×10-1 | 7.965×10-4 | 1.221×10-2 | 2.738×10-2 |
IDE | 9.992×10-15 | 9.865×10-3 | 2.450×10-13 | 1.972×10-3 | 3.629×10-3 | |
Fras | DE | 1.373×102 | 1.611×102 | 1.521×102 | 1.526×102 | 7.239×100 |
IDE | 4.724×101 | 1.144×102 | 8.666×101 | 8.472×101 | 1.816×101 | |
Fsch | DE | 2.716×102 | 4.542×103 | 3.022×103 | 2.804×103 | 1.194×103 |
IDE | 7.440×10-10 | 2.369×102 | 1.184×102 | 8.054×101 | 8.863×101 | |
Fsal | DE | 5.187×10-1 | 8.132×10-1 | 7.052×10-1 | 7.142×10-1 | 6.810×10-2 |
IDE | 1.999×10-1 | 2.999×10-1 | 2.825×10-1 | 2.570×10-1 | 4.716×10-2 | |
Fwht | DE | 7.465×102 | 1.008×103 | 8.378×102 | 8.446×102 | 5.373×101 |
IDE | 3.124×102 | 5.419×102 | 4.383×102 | 4.327×102 | 5.412×10-1 |
Table 1 The comparison results of two algorithms over benchmark functions
函数 | 算法 | 最小值 | 最大值 | 中位值 | 平均值 | 标准差 |
---|---|---|---|---|---|---|
Fsph | DE | 3.024×10-5 | 1.372×10-4 | 6.460×10-5 | 6.897×10-5 | 3.124×10-5 |
IDE | 9.946×10-15 | 3.052×10-13 | 3.161×10-14 | 5.171×10-14 | 5.979×10-14 | |
Fros | DE | 4.392×101 | 6.439×102 | 9.895×101 | 1.707×102 | 1.564×102 |
IDE | 2.521×101 | 1.033×102 | 2.597×101 | 3.816×101 | 2.545×101 | |
Fack | DE | 1.322×10-3 | 2.871×10-3 | 2.188×10-3 | 2.135×10-3 | 4.463×10-4 |
IDE | 3.023×10-8 | 1.217×10-7 | 6.460×10-8 | 6.870×10-8 | 2.363×10-8 | |
Fgwr | DE | 8.075×10-5 | 1.080×10-1 | 7.965×10-4 | 1.221×10-2 | 2.738×10-2 |
IDE | 9.992×10-15 | 9.865×10-3 | 2.450×10-13 | 1.972×10-3 | 3.629×10-3 | |
Fras | DE | 1.373×102 | 1.611×102 | 1.521×102 | 1.526×102 | 7.239×100 |
IDE | 4.724×101 | 1.144×102 | 8.666×101 | 8.472×101 | 1.816×101 | |
Fsch | DE | 2.716×102 | 4.542×103 | 3.022×103 | 2.804×103 | 1.194×103 |
IDE | 7.440×10-10 | 2.369×102 | 1.184×102 | 8.054×101 | 8.863×101 | |
Fsal | DE | 5.187×10-1 | 8.132×10-1 | 7.052×10-1 | 7.142×10-1 | 6.810×10-2 |
IDE | 1.999×10-1 | 2.999×10-1 | 2.825×10-1 | 2.570×10-1 | 4.716×10-2 | |
Fwht | DE | 7.465×102 | 1.008×103 | 8.378×102 | 8.446×102 | 5.373×101 |
IDE | 3.124×102 | 5.419×102 | 4.383×102 | 4.327×102 | 5.412×10-1 |
函数 | 算法 | N=50 | N=100 | N=150 | N=200 | N=250 | N=300 | N=350 | N=400 |
---|---|---|---|---|---|---|---|---|---|
Fsph | DE | 6.90×10-5 | 1.96×10-4 | 2.57×10-4 | 2.86×10-4 | 3.35×10-4 | 3.64×10-4 | 3.54×10-4 | 3.92×10-4 |
IDE | 5.17×10-14 | 5.33×10-12 | 2.38×10-11 | 5.29×10-11 | 7.19×10-11 | 1.14×10-10 | 1.44×10-10 | 1.49×10-10 | |
Fros | DE | 1.71×102 | 2.41×102 | 2.32×102 | 2.89×102 | 2.60×102 | 2.56×102 | 2.67×102 | 2.73×102 |
IDE | 3.82×101 | 2.75×101 | 2.73×101 | 2.47×101 | 2.49×101 | 2.48×101 | 2.48×101 | 2.46×101 | |
Fack | DE | 2.14×10-3 | 4.13×10-3 | 4.70×10-3 | 5.15×10-3 | 5.41×10-3 | 5.71×10-3 | 5.63×10-3 | 5.78×10-3 |
IDE | 6.87×10-8 | 5.82×10-7 | 1.27×10-6 | 2.03×10-6 | 2.75×10-6 | 2.99×10-6 | 3.15×10-6 | 3.52×10-6 | |
Fgwr | DE | 1.22×10-2 | 1.71×10-2 | 1.77×10-2 | 1.08×10-2 | 5.41×10-3 | 1.49×10-2 | 6.71×10-3 | 1.01×10-2 |
IDE | 1.97×10-3 | 2.96×10-4 | 2.96×10-4 | 3.11×10-10 | 5.59×10-10 | 5.03×10-10 | 2.96×10-4 | 7.25×10-10 | |
Fras | DE | 1.53×102 | 1.43×102 | 1.47×102 | 1.44×102 | 1.46×102 | 1.43×102 | 1.43×102 | 1.41×102 |
IDE | 8.47×101 | 1.06×102 | 1.10×102 | 1.13×102 | 1.17×102 | 1.16×102 | 1.20×102 | 1.18×102 | |
Fsch | DE | 2.80×103 | 3.75×103 | 4.03×103 | 4.13×103 | 4.20×103 | 4.10×103 | 4.16×103 | 4.25×103 |
IDE | 8.05×101 | 2.11×10-5 | 2.60×10-4 | 2.40×10-4 | 2.17×10-4 | 2.41×10-4 | 2.63×10-4 | 1.72×10-3 | |
Fsal | DE | 7.14×10-1 | 7.90×10-1 | 7.86×10-1 | 7.89×10-1 | 7.95×10-1 | 8.01×10-1 | 7.97×10-1 | 7.96×10-1 |
IDE | 2.57×10-1 | 2.72×10-1 | 2.73×10-1 | 2.82×10-1 | 2.89×10-1 | 2.89×10-1 | 2.96×10-1 | 2.97×10-1 | |
Fwht | DE | 8.45×102 | 1.07×103 | 1.21×103 | 1.45×103 | 1.37×103 | 1.39×103 | 1.52×103 | 1.51×103 |
IDE | 4.33×102 | 5.36×102 | 5.54×102 | 5.81×102 | 5.84×102 | 5.87×102 | 5.80×102 | 5.86×102 |
Table 2 Experimental results with different population size
函数 | 算法 | N=50 | N=100 | N=150 | N=200 | N=250 | N=300 | N=350 | N=400 |
---|---|---|---|---|---|---|---|---|---|
Fsph | DE | 6.90×10-5 | 1.96×10-4 | 2.57×10-4 | 2.86×10-4 | 3.35×10-4 | 3.64×10-4 | 3.54×10-4 | 3.92×10-4 |
IDE | 5.17×10-14 | 5.33×10-12 | 2.38×10-11 | 5.29×10-11 | 7.19×10-11 | 1.14×10-10 | 1.44×10-10 | 1.49×10-10 | |
Fros | DE | 1.71×102 | 2.41×102 | 2.32×102 | 2.89×102 | 2.60×102 | 2.56×102 | 2.67×102 | 2.73×102 |
IDE | 3.82×101 | 2.75×101 | 2.73×101 | 2.47×101 | 2.49×101 | 2.48×101 | 2.48×101 | 2.46×101 | |
Fack | DE | 2.14×10-3 | 4.13×10-3 | 4.70×10-3 | 5.15×10-3 | 5.41×10-3 | 5.71×10-3 | 5.63×10-3 | 5.78×10-3 |
IDE | 6.87×10-8 | 5.82×10-7 | 1.27×10-6 | 2.03×10-6 | 2.75×10-6 | 2.99×10-6 | 3.15×10-6 | 3.52×10-6 | |
Fgwr | DE | 1.22×10-2 | 1.71×10-2 | 1.77×10-2 | 1.08×10-2 | 5.41×10-3 | 1.49×10-2 | 6.71×10-3 | 1.01×10-2 |
IDE | 1.97×10-3 | 2.96×10-4 | 2.96×10-4 | 3.11×10-10 | 5.59×10-10 | 5.03×10-10 | 2.96×10-4 | 7.25×10-10 | |
Fras | DE | 1.53×102 | 1.43×102 | 1.47×102 | 1.44×102 | 1.46×102 | 1.43×102 | 1.43×102 | 1.41×102 |
IDE | 8.47×101 | 1.06×102 | 1.10×102 | 1.13×102 | 1.17×102 | 1.16×102 | 1.20×102 | 1.18×102 | |
Fsch | DE | 2.80×103 | 3.75×103 | 4.03×103 | 4.13×103 | 4.20×103 | 4.10×103 | 4.16×103 | 4.25×103 |
IDE | 8.05×101 | 2.11×10-5 | 2.60×10-4 | 2.40×10-4 | 2.17×10-4 | 2.41×10-4 | 2.63×10-4 | 1.72×10-3 | |
Fsal | DE | 7.14×10-1 | 7.90×10-1 | 7.86×10-1 | 7.89×10-1 | 7.95×10-1 | 8.01×10-1 | 7.97×10-1 | 7.96×10-1 |
IDE | 2.57×10-1 | 2.72×10-1 | 2.73×10-1 | 2.82×10-1 | 2.89×10-1 | 2.89×10-1 | 2.96×10-1 | 2.97×10-1 | |
Fwht | DE | 8.45×102 | 1.07×103 | 1.21×103 | 1.45×103 | 1.37×103 | 1.39×103 | 1.52×103 | 1.51×103 |
IDE | 4.33×102 | 5.36×102 | 5.54×102 | 5.81×102 | 5.84×102 | 5.87×102 | 5.80×102 | 5.86×102 |
噪声 | 算法 | ξ1 | ξ2 | ξ3 | ξ4 | λ | RC | B | f(x) |
---|---|---|---|---|---|---|---|---|---|
无噪声 | RCGA | -0.938096 | 0.00316553 | 8.805×10-5 | -1.75×10-4 | 20.18 | 0.000596 | 0.02575428 | 7.2056×10-4 |
PSO | -0.853200 | 0.00249636 | 4.716×10-5 | -9.54×10-4 | 10.00 | 0.000100 | 0.01360000 | 8.0614×10-2 | |
ABC | -0.996693 | 0.00333755 | 8.716×10-5 | -1.91×10-4 | 17.52 | 0.000212 | 0.01771729 | 4.7300×10-3 | |
DE | -1.090382 | 0.00297845 | 3.837×10-5 | -1.81×10-4 | 22.17 | 0.000468 | 0.02667588 | 3.3816×10-4 | |
IDE | -0.901873 | 0.00295771 | 7.894×10-5 | -1.87×10-4 | 22.65 | 0.000184 | 0.02832236 | 1.4398×10-4 | |
低噪声 | RCGA | -1.132093 | 0.00368763 | 8.541×10-5 | -1.79×10-4 | 23.98 | 0.000575 | 0.02942129 | 1.7529×10-2 |
PSO | -0.948038 | 0.00159462 | 4.970×10-5 | -1.55×10-4 | 21.41 | 0.000127 | 0.02989030 | 1.6181×10-1 | |
ABC | -0.907133 | 0.00285576 | 6.745×10-5 | -1.92×10-4 | 17.85 | 0.000608 | 0.01716988 | 2.5533×10-2 | |
DE | -1.127019 | 0.00366308 | 8.368×10-5 | -1.88×10-4 | 21.43 | 0.000144 | 0.02802703 | 1.7573×10-2 | |
IDE | -1.036553 | 0.00317264 | 6.538×10-5 | -1.83×10-4 | 23.35 | 0.000484 | 0.02817283 | 1.7343×10-2 | |
高噪声 | RCGA | -0.908332 | 0.00261682 | 4.761×10-5 | -2.12×10-4 | 24.00 | 0.000482 | 0.01833886 | 9.4149×10-2 |
PSO | -1.186572 | 0.00356386 | 6.002×10-5 | -1.57×10-4 | 10.23 | 0.000672 | 0.01417309 | 2.3739×10-1 | |
ABC | -1.122471 | 0.00318047 | 4.510×10-5 | -2.01×10-4 | 20.03 | 0.000730 | 0.01376492 | 9.6348×10-2 | |
DE | -1.087087 | 0.00304861 | 4.168×10-5 | -2.15×10-4 | 23.05 | 0.000182 | 0.01858317 | 9.4147×10-2 | |
IDE | -1.022205 | 0.00294057 | 4.790×10-5 | -2.14×10-4 | 23.69 | 0.000211 | 0.01950286 | 9.4140×10-2 |
Table 3 The best results of five algorithms under three different conditions
噪声 | 算法 | ξ1 | ξ2 | ξ3 | ξ4 | λ | RC | B | f(x) |
---|---|---|---|---|---|---|---|---|---|
无噪声 | RCGA | -0.938096 | 0.00316553 | 8.805×10-5 | -1.75×10-4 | 20.18 | 0.000596 | 0.02575428 | 7.2056×10-4 |
PSO | -0.853200 | 0.00249636 | 4.716×10-5 | -9.54×10-4 | 10.00 | 0.000100 | 0.01360000 | 8.0614×10-2 | |
ABC | -0.996693 | 0.00333755 | 8.716×10-5 | -1.91×10-4 | 17.52 | 0.000212 | 0.01771729 | 4.7300×10-3 | |
DE | -1.090382 | 0.00297845 | 3.837×10-5 | -1.81×10-4 | 22.17 | 0.000468 | 0.02667588 | 3.3816×10-4 | |
IDE | -0.901873 | 0.00295771 | 7.894×10-5 | -1.87×10-4 | 22.65 | 0.000184 | 0.02832236 | 1.4398×10-4 | |
低噪声 | RCGA | -1.132093 | 0.00368763 | 8.541×10-5 | -1.79×10-4 | 23.98 | 0.000575 | 0.02942129 | 1.7529×10-2 |
PSO | -0.948038 | 0.00159462 | 4.970×10-5 | -1.55×10-4 | 21.41 | 0.000127 | 0.02989030 | 1.6181×10-1 | |
ABC | -0.907133 | 0.00285576 | 6.745×10-5 | -1.92×10-4 | 17.85 | 0.000608 | 0.01716988 | 2.5533×10-2 | |
DE | -1.127019 | 0.00366308 | 8.368×10-5 | -1.88×10-4 | 21.43 | 0.000144 | 0.02802703 | 1.7573×10-2 | |
IDE | -1.036553 | 0.00317264 | 6.538×10-5 | -1.83×10-4 | 23.35 | 0.000484 | 0.02817283 | 1.7343×10-2 | |
高噪声 | RCGA | -0.908332 | 0.00261682 | 4.761×10-5 | -2.12×10-4 | 24.00 | 0.000482 | 0.01833886 | 9.4149×10-2 |
PSO | -1.186572 | 0.00356386 | 6.002×10-5 | -1.57×10-4 | 10.23 | 0.000672 | 0.01417309 | 2.3739×10-1 | |
ABC | -1.122471 | 0.00318047 | 4.510×10-5 | -2.01×10-4 | 20.03 | 0.000730 | 0.01376492 | 9.6348×10-2 | |
DE | -1.087087 | 0.00304861 | 4.168×10-5 | -2.15×10-4 | 23.05 | 0.000182 | 0.01858317 | 9.4147×10-2 | |
IDE | -1.022205 | 0.00294057 | 4.790×10-5 | -2.14×10-4 | 23.69 | 0.000211 | 0.01950286 | 9.4140×10-2 |
1 | Larminie J, Dicks A. Fuel Cell Systems Explained [M]. West Sussex, England: John Wiley& Sons, 2003. |
2 | Mock P, Schmid S A. Fuel cells for automotive powertrains—a techno-economic assessment[J]. Journal of Power Sources, 2009, 190(1): 133-140. |
3 | Jia J, Li Q, Wang Y, et al. Modeling and dynamic characteristic simulation of a proton exchange membrane fuel cell[J]. IEEE Transactions on Energy Conversion, 2009, 24(1): 283-291. |
4 | 彭跃进, 彭赟, 李伦, 等. 质子交换膜燃料电池电源系统停机特性及控制策略[J]. 化工学报, 2015, 66(3): 1178-1184. |
Peng Y J, Peng Y, Li L, et al. Shutdown process and shutdown strategy of PEMFC power system[J]. CIESC Journal, 2015, 66(3): 1178-1184. | |
5 | Correa J M, Farret F A, Popov V A, et al. Sensitivity analysis of the modeling parameters used in simulation of proton exchange membrane fuel cells[J]. IEEE Transactions on Energy Conversion, 2005, 20(1): 211-218. |
6 | Mo Z, Zhu X, Wei L, et al. Parameter optimization for a PEMFC model with a hybrid genetic algorithm[J]. International Journal of Energy Research, 2006, 30(8): 585-597. |
7 | Yang B, Wang J, Yu L, et al. A critical survey on proton exchange membrane fuel cell parameter estimation using meta-heuristic algorithms[J]. Journal of Cleaner Production, 2020, 265: 121660. |
8 | Priya K, Sathishkumar K, Rajasekar N. A comprehensive review on parameter estimation techniques for proton exchange membrane fuel cell modelling[J]. Renewable and Sustainable Energy Reviews, 2018, 93: 121-144. |
9 | Mohamed I, Jenkins N. Proton exchange membrane (PEM) fuel cell stack configuration using genetic algorithms[J]. Journal of Power Sources, 2004, 131(1/2): 142-146. |
10 | Ye M, Wang X, Xu Y. Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization[J]. International Journal of Hydrogen Energy, 2009, 34(2): 981-989. |
11 | 李奇, 陈维荣, 刘述奎, 等. 基于自适应聚焦粒子群算法的质子交换膜燃料电池机理建模[J]. 中国电机工程学报, 2009, 29(20): 119-124. |
Li Q, Chen W R, Liu S K, et al. Mechanism modeling of proton exchange membrane fuel cell based on adaptive focusing particle swarm optimization [J]. Proceedings of the CSEE, 2009, 29(20): 119-124. | |
12 | Sun Z, Wang N, Bi Y, et al. Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm[J]. Energy, 2015, 90: 1334-1341. |
13 | Gong W, Cai Z. Accelerating parameter identification of proton exchange membrane fuel cell model with ranking-based differential evolution[J]. Energy, 2013, 59: 356-364. |
14 | Chakraborty U K, Abbott T E, Das S K. PEM fuel cell modeling using differential evolution[J]. Energy, 2012, 40(1): 387–399. |
15 | Zhang W, Wang N, Yang S. Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2013, 38(14): 5796-5806. |
16 | Yang S, Wang N. A novel P systems-based optimization algorithm for parameter estimation of proton exchange membrane fuel cell model[J]. International Journal of Hydrogen Energy, 2012, 37(10): 8465-8476. |
17 | Askarzadeh A, Rezazadeh A. An innovative global harmony search algorithm for parameter identification of a PEM fuel cell model[J]. IEEE Transactions on Industrial Electronics, 2012, 59(9): 3473-3480. |
18 | Price K, Storn R. Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359. |
19 | Dragoi E N, Curteanu S. The use of differential evolution algorithm for solving chemical engineering problems[J]. Reviews in Chemical Engineering, 2016, 32(2): 149-180. |
20 | 徐斌, 陈旭, 陶莉莉, 等. 基于适应策略差分进化算法的化工反应动力学参数估值[J]. 化工进展, 2018, 37(6): 2077-2083. |
Xu B, Chen X, Tao L L, et al. Differential evolution using adaptive strategy for parameter estimation of chemical reaction kinetics[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2077-2083. | |
21 | 徐斌, 陶莉莉, 程武山. 一种自适应多策略差分进化算法及其应用[J]. 化工学报, 2016, 67(12): 5190-5198. |
Xu B, Tao L L, Cheng W S. A self-adaptive differential evolution algorithm with multiple strategies and its application[J]. CIESC Journal, 2016, 67(12): 5190-5198. | |
22 | 曹蓓, 陈庆达, 丁进良. 多收率约束的催化裂化反再系统改进差分进化操作优化[J]. 控制理论与应用, 2019, 36(8): 1207-1216. |
Cao B, Chen Q D, Ding J L. Operational optimization of fluid catalytic cracking reaction-regeneration system with multi-yield constraints using improved differential evolution algorithm[J]. Control Theory & Applications, 2019, 36(8): 1207-1216. | |
23 | Bilal, Pant M, Zaheer H, et al. Differential evolution: a review of more than two decades of research[J]. Engineering Applications of Artificial Intelligence, 2020, 90: 103479. |
24 | Zhang J, Sanderson A C. JADE: adaptive differential evolution with optional external archive[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 945-958. |
25 | Das S, Abraham A, Chakraborty U K, et al. Differential evolution using a neighborhood-based mutation operator[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(3): 526-553. |
26 | Epitropakis M G, Tasoulis D K, Pavlidis N G, et al. Enhancing differential evolution utilizing proximity-based mutation operators[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 99-119. |
27 | Gong W, Cai Z. Differential evolution with ranking-based mutation operators[J]. IEEE Transactions on Cybernetics, 2013, 43(6): 2066-2081. |
28 |
赵杨, 熊伟丽. 基于多策略自适应差分进化算法的污水处理过程多目标优化控制[J]. 化工学报, 2021, 72(4).doi:10.11949/0438-1157.20201068.
DOI |
Zhao Y, Xiong W L. Multi-objective optimization control of wastewater treatment process based on multi-strategy adaptive differential evolution algorithm[J]. CIESC Journal, , 2021, 72(4).doi:10.11949/0438-1157.20201068.
DOI |
|
29 | Chen X, Xu B, Mei C L, et al. Teaching-learning-based artificial bee colony for solar photovoltaic parameter estimation[J]. Applied Energy, 2018, 212: 1578-1588. |
30 | Hu C P, Yan X F. An immune self-adaptive differential evolution algorithm with application to estimate kinetic parameters for homogeneous mercury oxidation[J]. Chinese Journal of Chemical Engineering, 2009, 17(2): 232-240. |
31 | Noman N, Iba H. Accelerating differential evolution using an adaptive local search[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(1): 107-125. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[3] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[4] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[5] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[6] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[7] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[8] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[9] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[10] | Chunlei ZHAO, Liang GUO, Cong GAO, Wei SONG, Jing WU, Jia LIU, Liming LIU, Xiulai CHEN. Metabolic engineering of Escherichia coli for chondroitin production [J]. CIESC Journal, 2023, 74(5): 2111-2122. |
[11] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
[12] | Xiaoyong GAO, Fuyu HUANG, Wanpeng ZHENG, Diao PENG, Yixu YANG, Dexian HUANG. Scheduling optimization of refinery and chemical production process considering the safety and stability of scheduling operation [J]. CIESC Journal, 2023, 74(4): 1619-1629. |
[13] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[14] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[15] | Xuerong GU, Shuoshi LIU, Siyu YANG. Research on multi-parameter optimization method based on parallel EGO and surrogate-assisted model [J]. CIESC Journal, 2023, 74(3): 1205-1215. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||