[1] |
KADLEC P, GABRYS B, STRANDT S. Data-driven soft sensors in the process industry[J]. Computers & Chemical Engineering, 2009, 33(4):795-814.
|
[2] |
FORTUNA L, GRAZIANI S, RIZZO A, et al. Soft Sensors for Monitoring and Control of Industrial Processes[M]. Berlin:Springer Science & Business Media, 2007:15-39.
|
[3] |
KHATIBISEPEHR S, HUANG B, KHARE S. Design of inferential sensors in the process industry:a review of Bayesian methods[J]. Journal of Process Control, 2013, 23(10):1575-1596.
|
[4] |
YUAN X, GE Z, YE L, et al. Supervised neighborhood preserving embedding for feature extraction and its application for soft sensor modeling[J]. Journal of Chemometrics, 2016, 30(8):430-441.
|
[5] |
熊伟丽, 李妍君, 姚乐, 等. 一种动态校正的AGMM-GPR多模型软测量建模方法[J]. 大连理工大学学报, 2016, 56(1):77-85. XIONG W L, LI Y J, YAO L, et al. A dynamically corrected AGMM-GPR multi-model soft sensor modeling method[J]. Journal of Dalian University of Technology, 2016, 56(1):77-85.
|
[6] |
张伟, 熊伟丽, 徐保国. 基于实时学习的高斯过程回归多模型融合建模[J]. 信息与控制, 2015, 44(4):487-492. ZHANG W, XIONG W L, XU B G. Multi-model combination modeling based on just-in-time learning using Gaussian process regression[J]. Information and Control, 2015, 44(4):487-492.
|
[7] |
YUAN X F, YE L J, BAO L, et al. Nonlinear feature extraction for soft sensor modeling based on weighted probabilistic PCA[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 147(2015):167-175.
|
[8] |
KADLEC P, GABRYS B. Local learning-based adaptive soft sensor for catalyst activation prediction[J]. AIChE Journal, 2011, 57(5):1288-1301.
|
[9] |
KOMULAINEN T, SOURANDER M, JÄMSÄ-JOUNELA S L. An online application of dynamic PLS to a dearomatization process[J]. Computers & Chemical Engineering, 2004, 28(12):2611-2619.
|
[10] |
ZHANG J, JIN Q B, XU Y M. Inferential estimation of polymer melt index using sequentially trained bootstrap aggregated neural networks[J]. Chemical Engineering and Technology, 2006, 29(4):442-448.
|
[11] |
阮宏镁, 田学民, 王平. 基于联合互信息的动态软测量方法[J]. 化工学报, 2014, 65(11):4497-4502. RUAN H M, TIAN X M, WANG P. Dynamic soft sensor method based on joint mutual information[J]. CIESC Journal, 2014, 65(11):4497-4502.
|
[12] |
RAHMAN M M, IMTIAZ S A, HAWBOLDT K. A hybrid input variable selection method for building soft sensor from correlated process variables[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 157(2016):67-77.
|
[13] |
KIM S, KANO M, HASEBE S, et al. Long-term industrial applications of inferential control based on just-in-time soft-sensors:economical impact and challenges[J]. Industrial & Engineering Chemistry Research, 2013, 52(35):12346-12356.
|
[14] |
KADLEC P, GRBIC R, GABRYS B. Review of adaptation mechanisms for data-driven soft sensors[J]. Computers & Chemical Engineering, 2011, 35(1):1-24.
|
[15] |
KANEKO H, OKADA T, FUNATSU K. Selective use of adaptive soft sensors based on process state[J]. Industrial & Engineering Chemistry Research, 2014, 53(41):15962-15968.
|
[16] |
ZHANG W, LI Y, XIONG W, et al. Adaptive soft sensor for online prediction based on enhanced moving window GPR[C]//Control, Automation and Information Sciences (ICCAIS), 2015 International Conference on. IEEE, 2015:291-296.
|
[17] |
XU O G, LIU J F, FU Y F, et al. Dual updating strategy for moving-window partial least-squares based on model performance assessment[J]. Industrial & Engineering Chemistry Research, 2015, 54(19):5273-5284.
|
[18] |
DAYAL B S, MACGREGOR J F. Recursive exponentially weighted PLS and its applications to adaptive control and prediction[J]. Journal of Process Control, 1997, 7(3):169-179.
|
[19] |
MATIAS T, SOUZA F, ARAUJO R, et al. On-line sequential extreme learning machine based on recursive partial least squares[J]. Journal of Process Control, 2015, 27:15-21.
|
[20] |
LIU Y Q, HUANG D P, LI Y. Development of interval soft sensors using enhanced just-in-time learning and inductive confidence predictor[J]. Industrial & Engineering Chemistry research, 2012, 51(8):3356-3367.
|
[21] |
FUJIWARA K, KANO M, HASEBE S, et al. Soft-sensor development using correlation-based just-in-time modeling[J]. AIChE Journal, 2009, 55(7):1754-1765.
|
[22] |
KANEKO H, FUNATSU K. Moving window and just-in-time soft sensor model based on time differences considering a small number of measurements[J]. Industrial & Engineering Chemistry Research, 2015, 54(2):700-704.
|
[23] |
KANEKO H, FUNATSU K. Classification of the degradation of soft sensor models and discussion on adaptive models[J]. AIChE Journal, 2013, 59(7):2339-2347.
|
[24] |
袁小锋, 葛志强, 宋执环. 基于时间差分和局部加权偏最小二乘算法的过程自适应软测量建模[J]. 化工学报, 2016, 67(3):724-728. YUAN X F, GE Z Q, SONG Z H. Adaptive soft sensor based on time difference model and locally weighted partial least squares regression[J]. CIESC Journal, 2016, 67(3):724-728.
|
[25] |
WANG L, JIN H, CHEN X, et al. Soft sensor development based on the hierarchical ensemble of Gaussian process regression models for nonlinear and non-Gaussian chemical processes[J]. Industrial & Engineering Chemistry Research, 2016, 55(28):7704-7719.
|
[26] |
YANG K, JIN H, CHEN X, et al. Soft sensor development for online quality prediction of industrial batch rubber mixing process using ensemble just-in-time Gaussian process regression models[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 155(2016):170-182.
|
[27] |
JIN H, CHEN X, WANG L, et al. Dual learning-based online ensemble regression approach for adaptive soft sensor modeling of nonlinear time-varying processes[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 151(2016):228-244.
|
[28] |
SHAO W M, TIAN X M. Adaptive soft sensor for quality prediction of chemical processes based on selective ensemble of local partial least squares models[J]. Chemical Engineering Research & Design, 2015, 95(2015):113-132.
|
[29] |
JIN H, CHEN X,WANG L, et al. Adaptive soft sensor development based on online ensemble Gaussian process regression for nonlinear time-varying batch processes[J]. Industrial & Engineering Chemistry Research, 2015, 54(30):7320-7345.
|
[30] |
LIN Y, CUNNINGHAM G A. A new approach to fuzzy-neural system modeling[J]. IEEE Transactions on Fuzzy Systems, 1995, 3(2):190-198.
|
[31] |
RASMUSSEN C E, WILLIAMS C K I. Gaussian Processes for Machine Learning[M]. Cambridge:The MIT Press, 2006:8-29.
|