[1] |
LUO X S, SONG Y D. Data-driven predictive control of Hammerstein-Wiener systems based on subspace identification[J]. Information Sciences, 2018, 422:447-461.
|
[2] |
ZHANG B, MAO Z Z. Bias compensation principle based recursive least squares identification method for Hammerstein nonlinear systems[J]. Journal of the Franklin Institute, 2017, 354(3):1340-1355.
|
[3] |
BAI J, MAO Z Z, PU T C. Modeling for electrode system in alternating current electric arc furnace based on Hammerstein-Wiener model[J]. Chinese Journal of Scientific Instrument, 2017, 38(4):1024-1030.
|
[4] |
ROSENBROCK H H. Design of multivariable control systems using the inverse Nyquist array[J]. Proceedings of the Institution of Electrical Engineers, 1969, 116(11):1929-1936.
|
[5] |
RICARDO C G, OSCAR M A, JOHAN A K. Impulse response constrained LS-SVM modeling for Hammerstein system identification[J]. IFAC-Papers Online, 2017, 50(1):14046-14051.
|
[6] |
靳其兵, 杨瑞赓, 王珠, 等. 一类统一非线性特性的Hammerstein模型辨识方法研究[J]. 系统仿真学报, 2014, 26(12):2887-2891. JIN Q B, YANG R G, WANG Z, et al. Description of unified nonlinear characteristics Hammerstein model and its identification method research[J]. Journal of System Simulation, 2014, 26(12):2887-2891.
|
[7] |
VEEN G J, WINGERDEN J W, VERHAEGEN M. Global identification of wind turbines using Hammerstein identification method[J]. IEEE Transactions Control System Technology, 2012, 99:1-8.
|
[8] |
HARNISCHMACHER G, MARQUARDT W. A multi-variable Hammerstein model for process with input directionality[J]. Process Control, 2007, 17(6):539-550.
|
[9] |
WANG D Q, DING F. Parameter estimation algorithms for multivariable Hammerstein CARMA systems[J]. Information Sciences, 2016, s355/356:237-248.
|
[10] |
DING F, WANG Y, DAI J, et al. A recursive least squares parameter estimation algorithm for output nonlinear autoregressive systems using the input-output data filtering[J]. Journal of the Franklin Institute, 2017, 354(15):6938-6955.
|
[11] |
吕游, 刘吉臻, 杨婷婷, 等. 基于PLS特征提取和LS-SVM结合的NOx排放特性建模[J]. 仪器仪表学报, 2013, 34(11):2418-2424. LÜ Y, LIU J Z, YANG T T, et al. NOx emission characteristic modeling based on feature extraction using PLS and LS-SVM[J]. Chinese Journal of Scientific Instrument, 2013, 34(11):2418-2424.
|
[12] |
孙茂伟, 杨慧中. 局部加权混合核偏最小二乘算法及其在软测量中的应用[J]. 信息与控制, 2015, 44(4):481-486. SUN M W, YANG H Z. Local weighted mixed kernel partial least squares algorithm and its applications to soft-sensing[J]. Information and Control, 2015, 44(4):481-486.
|
[13] |
MU B Q, BAI E W, ZHENG W X, et al. A globally consistent nonlinear least squares estimator for identification of nonlinear rational systems[J]. Automatica, 2017, 77:322-335.
|
[14] |
QIN S J. Statistical process monitoring:basics and beyond[J]. Journal of Chemometrics, 2003, 17:480-502.
|
[15] |
YAN L P, LENNOX B. The application of nonlinear partial least square to batch process[J]. IFAC Proceedings Volumes, 2013, 46(32):289-294.
|
[16] |
时瑞研, 潘立登. 一种新型非线性偏最小二乘方法研究及应用——基于Chebyshev多项式改进的PLS方法[J].控制工程, 2003, 10(6):506-509. SHI R Y, PAN L D. Modified method of nonlinear PLS and its application-based on Chebyshev polynomial[J].Control Engineering of China, 2003, 10(6):506-509.
|
[17] |
王功明, 李文静, 乔俊飞. 基于PLSR适应深度信念网络的出水总磷预测[J]. 化工学报, 2017, 68(5):1987-1996. WANG G M, LI W J, QIAO J F. Prediction of effluent total phosphorus using PLSR-based adaptive deep belief network[J]. CIESC Journal, 2017, 68(5):1987-1996.
|
[18] |
DING F, CHEN T. Identification of Hammerstein nonlinear ARMAX systems[J]. Automatica, 2005, 41(9):1479-1489.
|
[19] |
GRBIC R, SCITOVSKI K, SABO K, et al. Approximating surfaces by the moving least absolute deviations method[J]. Applied Mathematics & Computation, 2013, 219(9):4387-4399.
|
[20] |
KELKINNAMA M, TAHERI S M. Fuzzy least-absolutes regression using shape preserving operations[J]. Information Sciences, 2012, 214(10):105-120.
|
[21] |
董建, 谢开贵. 基于最小一乘准则的非线性回归模型研究[J]. 重庆师范大学学报(自然科学版), 2001, 18(4):71-74. DONG J, XIE K G. Research of the non-linear regress models based on the least absolute criteria[J]. Journal of Chongqing Normal University (Natural Science Edition), 2001, 18(4):71-74.
|
[22] |
徐宝昌, 张瀛丹.基于近似最小一乘准则的多信息辨识算法[J]. 控制工程, 2015, 22(1):60-65. XU B C, ZHANG Y D. Multi-innovation identification algorithm based on approximate least absolute deviation[J]. Control Engineering of China, 2015, 22(1):60-65.
|
[23] |
徐宝昌, 林忠华, 肖玉月. 基于近似偏最小一乘的闭环系统辨识新方法[J]. 控制理论与应用, 2016, 33(11):1543-1551. XU B C, LIN Z H, XIAO Y Y. Identification of closed-loop system by partial least absolute deviation[J]. Control Theory & Applications, 2016, 33(11):1543-1551.
|
[24] |
DING F, LIU X P, LIU G J. Identification methods for Hammerstein nonlinear systems[J]. Digital Signal Processing, 2011, 21(2):215-238.
|
[25] |
FAN W, DING F. Three methods for Hammerstein models' parameter separation[J]. Science Technology and Engineering, 2008, 8(6):1586-1589.
|
[26] |
王桂增, 叶昊. 主元分析与偏最小二乘法[M]. 北京:清华大学出版社, 2012:41-59. WANG G Z, YE H. Principal Component Analysis and Partial Least Squares Method[M]. Beijing:Tsinghua University Press, 2012:41-59.
|
[27] |
HENSON M A, SEBORG D E. Adaptive nonlinear control of a pH neutralization process[J]. IEEE Trans. on Control Systems Technology, 1994, (2):169-182.
|
[28] |
HLAING Y M, CHIU M S, LAKSHMINARAYANAN S. Modeling and control of multivariable process using generalized Hammerstein model[J]. Chemical Engineering Research & Design, 2007, 85(4):445-454.
|
[29] |
COATES M J, KURUOGLU E E. Time-frequency based detection in impulsive noise environments using alpha-stable noise model[J]. Digital Signal Processing, 2002, 82(3):1917-1925.
|
[30] |
郭莹. 稳定分布环境下的时延估计新方法研究[D]. 大连:大连理工大学, 2009. GUO Y. The study on novel time delay estimation methods based on stable distribution[D]. Dalian:Dalian University of Technology, 2009.
|