[1] |
Liu X M, Lu G Q, Yan Z F, Beltramini J. Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2 [J]. Industrial & Engineering Chemistry Research, 2003, 42 (25): 6518-6530.
|
[2] |
Tsubaki N, Ito M, Fujimoto K. A new method of low-temperature methanol synthesis [J]. Journal of Catalysis, 2001, 197 (1): 224-227.
|
[3] |
Zeng J, Fujimoto K, Tsubaki N. A new low-temperature synthesis route of methanol: catalytic effect of the alcoholic solvent [J]. Energy & Fuels, 2002, 16 (1): 83-86.
|
[4] |
Palekar V M, Tierney J W, Wender I. Alkali compounds and copper chromite as low-temperature slurry phase methanol catalysts [J]. Applied Catalysis A: General, 1993, 103 (1): 105-122.
|
[5] |
Hu B, Fujimoto K. Low temperature methanol synthesis in slurry phase with a hybrid copper-formate system [J]. Catalysis Letters, 2009, 129 (3/4): 416-421.
|
[6] |
Bao J, Liu Z, Zhang Y, Tsubaki N. Preparation of mesoporous Cu/ZnO catalyst and its application in low-temperature methanol synthesis [J]. Catalysis Communications, 2008, 9 (5): 913-918.
|
[7] |
Yang R Q, Yu X C, Zhang Y, Li W Z, Tsubaki N. A new method of low-temperature methanol synthesis on Cu/ZnO/Al2O3 catalysts from CO/CO2/H2 [J]. Energy & Fuels, 2008, 87 (4/5): 443-450.
|
[8] |
Zhao T S, Zhang K, Chen X R, Ma Q X, Tsubaki N. A novel low-temperature methanol synthesis method from CO/H2/CO2 based on the synergistic effect between solid catalyst and homogeneous catalyst [J]. Catalysis Today, 2010, 149 (1/2): 98-104.
|
[9] |
Jiang X, Wang T. Influence of preparation method on morphology and photocatalysis activity of nanostructured TiO2 [J]. Environmental Science & Technology, 2007, 41 (12): 4441-4446.
|
[10] |
Wang T, Jiang X, Mao C. Influence of an adsorption layer and its evolvement on the formation of Ag [J]. Langmuir, 2008, 24 (24): 14042-14047.
|
[11] |
Jiang X, Deng H. Synthesis of Au-CeO2/SiO2 catalyst via adsorbed-layer reactor technique combined with alcohol-thermal treatment [J]. Applied Surface Science, 2011, 257 (24): 10883-10887.
|
[12] |
Fierro G, Jacono M L, Inversi M, Tsubaki N. Study of the reducibility of copper in CuO-ZnO catalysts by temperature-programmed reduction [J]. Applied Catalysis A: General, 1996, 137 (2): 327-348.
|
[13] |
Yang R Q, Fu Y L, Zhang Y, Tsubaki N. In situ DRIFT study of low-temperature methanol synthesis mechanism on Cu/ZnO catalysts from CO2-containing syngas using ethanol promoter [J]. Journal of Catalysis, 2004, 228 (1): 23-35.
|
[14] |
Yang R Q, Zhang Y, Iwama Y, Tsubaki N. Mechanistic study of a new low-temperature methanol synthesis on Cu/MgO catalysts [J]. Applied Catalysis A: General, 2005, 288 (1): 126-133.
|
[15] |
Reubroycharoen P, Vitidsant T, Yoneyama Y, Tsubaki N. Development of a new low-temperature methanol synthesis process [J]. Catalysis Today, 2004, 89 (4): 447-454.
|
[16] |
Hu B, Yamaguchi Y, Fujimoto K. Low temperature methanol synthesis in alcohol solvent over copper-based catalyst [J]. Catalysis Communications, 2009, 10 (12): 1620-1624.
|
[17] |
Xu B L, Yang R, Meng F Z, Reubroycharoen P, Vitidsant T, Zhang Y, Yoneyama Y, Tsubaki N. A new method of low temperature methanol synthesis [J]. Catalysis Surveys from Asia, 2009, 13 (3): 147-163.
|
[18] |
Hu B, Fujimoto K. High-performance Cu/MgO-Na catalyst for methanol synthesis via ethyl formate [J]. Applied Catalysis A: General, 2008, 346 (1): 174-178.
|