[1] |
Skropeta D. The effect of individual N-glycans on enzyme activity [J]. Bioorganic & Medicinal Chemistry, 2009, 17 (7): 2645-2653.
|
[2] |
Stengel C, Newman S P, Day J M, Tutill H J, Reed M J, Purohit A. Effects of mutations and glycosylations on STS activity: a site-directed mutagenesis study [J]. Molecular and Cellular Endocrinology, 2008, 283 (1): 76-82.
|
[3] |
Liao X, Wang W, Chen S, Wu Q. Role of glycosylation in corin zymogen activation [J]. Journal of Biological Chemistry, 2007, 282 (38): 27728-27735.
|
[4] |
LeBowitz J H, Grubb J H, Maga J A, Schmiel D H, Vogler C, Sly W S. Glycosylation-independent targeting enhances enzyme delivery to lysosomes and decreases storage in mucopolysaccharidosis type VII mice [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101 (9): 3083-3088.
|
[5] |
Han M, Wang X, Ding H, et al. The role of N-glycosylation sites in the activity, stability, and expression of the recombinant elastase expressed by Pichia pastoris [J]. Enzyme and Microbial Technology, 2014, 54: 32-37.
|
[6] |
Shi Yumei (石玉梅), Zheng Lei (郑磊), Li Juan (李娟). Research progress of glycosilation on protein stability [J]. Progress Modern Biomedicine (现代生物医学进展), 2011, 11 (24):5190-5192.
|
[7] |
Yasuda Y, Ikeda S, Sakai H, Tsukuba T, Okamoto K, Nishishita K, et al. Role of N-glycosylation in cathepsin E [J]. European Journal of Biochemistry, 1999, 266 (2): 383-391.
|
[8] |
Fonseca-Maldonado R, Vieira D S, Alponti J S, Bonneil E, Thibault P, Ward R J. Engineering the pattern of protein glycosylation modulates the thermostability of a GH11 xylanase [J]. Journal of Biological Chemistry, 2013, 288 (35): 25522-25534.
|
[9] |
Anumula K I L. High-sensitivity and high-resolution methods for glycoprotein analysis [J]. Analytical Biochemistry, 2000, 283 (1): 17-26.
|
[10] |
Kasturi L, Eshleman J R, Wunner, et al. The hydroxy amino acid in an Asn-X-Ser/Thr sequon can influence N-linked core glycosylation efficiency and the level of expression of a cell surface glycoprotein [J]. J. Biol. Chem., 1995, 270: 14756-14761.
|
[11] |
Culyba E K, Price J L, et al. Protein native-state stabilization by placing aromatic side chains in N-glycosylated reverse turns [J]. Science, 2011, 331 (6017): 571-575.
|
[12] |
Joshua L Price, David L Powers, Evan T Powers, et al. Glycosylation of the enhanced aromatic sequon is similarly stabilizing in three distinct reverse turn contexts [J]. Proceedings of the National Academy of Sciences, 2011, 108 (34): 14127-14132.
|
[13] |
Odon V V, Laura A, Palomaresb E D. The role of N-glycosylation on the enzymatic activity of a Pycnoporus sanguineus laccase [J]. Enzyme and Microbial Technology, 2009, 45: 233-239.
|
[14] |
Akao T. Differences in the metabolism of glycyrrhizin, glycyrrhetic acid and glycyrrhetic acid monoglucuronide by human intestinal flora [J]. Biological and Pharmaceutical Bulletin, 2000, 23 (12): 1418-1423.
|
[15] |
Feng S J, Li C, Xu X L, Wang X Y. Screening strains for directed biosynthesis of beta-d-mono-glucuronide-glycyrrhizin and kinetics of enzyme production [J]. Journal of Molecular Catalysis B, Enzymatic, 2006, 43: 63-67.
|
[16] |
Kim D H, Lee S W, Han M J. Biotransformation of glycyrrhizin to 18beta-glycyrrhetinic acid-3-O-beta-D-glucuronide by Streptococcus LJ-22, a human intestinal bacterium [J]. Biological and Pharmaceutical Bulletin, 1999, 22 (3): 320-322.
|
[17] |
Kuramoto T, Ito Y, Oda M, Tamura Y, Kitahata S. Microbial-production of glycyrrhetic acid 3-O-mono-β-D-glucuronide from glycyrrhizin by Cryptococcus magnus MG-27 [J]. Bioscience, Biotechnology, and Biochemistry, 1994, 58 (3): 455-458.
|
[18] |
Park H Y, Kim N Y, Han M J, Bae E A, Kim D H. Purification and characterization of two novel beta-d-glucuronidases converting glycyrrhizin to 18β-glycyrrhetinic acid-3-O-beta-D-glucuronide from Streptococcus LJ-22 [J]. Journal of Microbiology and Biotechnology, 2005, 15 (4): 792-799.
|
[19] |
Zou S, Xie L, Liu Y, Kaleem I, et al. N-linked glycosylation influences on the catalytic and biochemical properties of Penicillium purpurogenum β-d-glucuronidase [J]. Journal of biotechnology, 2012, 157 (3): 399-404.
|
[20] |
Wallace B D, Wang H, Lane K T, Scott J E, Orans, J, Koo J S, Venkatesh M, Jobin C, Yeh L A, Mani S, Redinbo M R. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme [J]. Science, 2010, 330 (6005): 831-835.
|
[21] |
Petrescu A J, Milac A L, et al. Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding [J]. Glycobiology, 2004, 14 (2): 103-114.
|
[22] |
Miller G C, Long C J, Bojilova E D, Marchadier D, Badellino K O, Blanchard N, Fuki I V, Glick J M, Rader D J. Role of N-linked glycosylation in the secretion and activity of endothelial lipase [J]. Journal of Lipid Research, 2004, 45 (11): 2080-2087.
|
[23] |
Brown R J, Miller G C, Griffon N, Long C J, Rader D J. Glycosylation of endothelial lipase at asparagine-116 reduces activity and the hydrolysis of native lipoproteins in vitro and in vivo [J]. Journal of Lipid Research, 2007, 48 (5): 1132-1139.
|
[24] |
Zou S P, Liu G Y, Kaleem I, Li C. Purification and characterization of a highly selective glycyrrhizin-hydrolyzing β-glucuronidase from Penicillium purpurogenum Li-3 [J]. Process Biochemistry, 2013, 48: 358-363.
|
[25] |
Apweiler R, Hermjakob H, Sharon N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database [J]. Biochim. Biophys. Acta, 1999, 1473 (1): 4-8.
|
[26] |
Nick Holmes. A splicing switch for T cells [J]. Science, 2008, 321: 646-647.
|
[27] |
Imperiali B, O'Connor S E. Effect of N-linked glycosylation on glycopeptide and glycoprotein structure [J]. Curr. Opin. Chem. Biol., 1999, 3 (6): 643-649.
|
[28] |
Wang C, Eufemi M, Turano C, et al. Influence of the carbohydrate moiety on the stability of glycoproteins [J]. Biochemistry, 1996, 35 (23): 7299-9307.
|