CIESC Journal ›› 2023, Vol. 74 ›› Issue (6): 2382-2390.DOI: 10.11949/0438-1157.20230122
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Guangyu WANG1,2(), Kai ZHANG1,2(), Kaihua ZHANG1,2, Dongke ZHANG3
Received:
2023-02-17
Revised:
2023-05-11
Online:
2023-07-27
Published:
2023-06-05
Contact:
Kai ZHANG
王光宇1,2(), 张锴1,2(), 张凯华1,2, 张东柯3
通讯作者:
张锴
作者简介:
王光宇(1991—),男,博士研究生,guangyu15@163.com
基金资助:
CLC Number:
Guangyu WANG, Kai ZHANG, Kaihua ZHANG, Dongke ZHANG. Heat and mass transfer and energy consumption for microwave drying of coal slime[J]. CIESC Journal, 2023, 74(6): 2382-2390.
王光宇, 张锴, 张凯华, 张东柯. 微波加热干燥煤泥热质传递及其能耗特性分析[J]. 化工学报, 2023, 74(6): 2382-2390.
样品 | 工业分析/%(质量) | 元素分析/%(质量) | 热值Qb.ad/(MJ/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mar | Mad | Aad | Vad | FCad | Cad | Had | Nad | Sad | O*ad | ||
煤泥 | 27.82 | 1.35 | 26.46 | 12.31 | 59.88 | 61.76 | 2.86 | 1.28 | 0.40 | 5.89 | 24.94 |
Table 1 Proximate and ultimate analysis of coal slime
样品 | 工业分析/%(质量) | 元素分析/%(质量) | 热值Qb.ad/(MJ/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mar | Mad | Aad | Vad | FCad | Cad | Had | Nad | Sad | O*ad | ||
煤泥 | 27.82 | 1.35 | 26.46 | 12.31 | 59.88 | 61.76 | 2.86 | 1.28 | 0.40 | 5.89 | 24.94 |
模型 | 功率/W | R2 | χ2 | RSS |
---|---|---|---|---|
Lewis模型 MR=exp(-kt) | 500 | 0.670 | 0.014 | 0.154 |
600 | 0.711 | 0.013 | 0.130 | |
700 | 0.638 | 0.016 | 0.115 | |
800 | 0.621 | 0.018 | 0.110 | |
Page模型 MR=exp(-ktn ) | 500 | 0.997 | 1.091×10-4 | 0.001 |
600 | 0.996 | 1.500×10-4 | 0.001 | |
700 | 0.999 | 5.567×10-5 | 3.340×10-4 | |
800 | 0.999 | 2.423×10-5 | 1.211×10-4 | |
修正Page模型(Ⅰ) MR=exp[-(kt) n ] | 500 | 0.997 | 1.091×10-4 | 0.001 |
600 | 0.996 | 1.500×10-4 | 0.001 | |
700 | 0.999 | 5.567×10-5 | 3.340×10-4 | |
800 | 0.999 | 2.423×10-5 | 1.211×10-4 | |
修正Page模型(Ⅱ) MR=aexp(-ktn ) | 500 | 0.997 | 1.046×10-4 | 9.419×10-4 |
600 | 0.996 | 1.467×10-4 | 0.001 | |
700 | 0.999 | 2.476×10-5 | 1.236×10-4 | |
800 | 0.999 | 1.375×10-5 | 5.502×10-5 | |
线性模型 MR=at+b | 500 | 0.999 | 4.985×10-5 | 4.985×10-4 |
600 | 0.999 | 5.872×10-5 | 5.285×10-4 | |
700 | 0.999 | 6.192×10-5 | 3.715×10-4 | |
800 | 0.998 | 1.022×10-4 | 5.108×10-4 |
Table 2 Statistical fitting results of the mathematical models in the constant-rate stage
模型 | 功率/W | R2 | χ2 | RSS |
---|---|---|---|---|
Lewis模型 MR=exp(-kt) | 500 | 0.670 | 0.014 | 0.154 |
600 | 0.711 | 0.013 | 0.130 | |
700 | 0.638 | 0.016 | 0.115 | |
800 | 0.621 | 0.018 | 0.110 | |
Page模型 MR=exp(-ktn ) | 500 | 0.997 | 1.091×10-4 | 0.001 |
600 | 0.996 | 1.500×10-4 | 0.001 | |
700 | 0.999 | 5.567×10-5 | 3.340×10-4 | |
800 | 0.999 | 2.423×10-5 | 1.211×10-4 | |
修正Page模型(Ⅰ) MR=exp[-(kt) n ] | 500 | 0.997 | 1.091×10-4 | 0.001 |
600 | 0.996 | 1.500×10-4 | 0.001 | |
700 | 0.999 | 5.567×10-5 | 3.340×10-4 | |
800 | 0.999 | 2.423×10-5 | 1.211×10-4 | |
修正Page模型(Ⅱ) MR=aexp(-ktn ) | 500 | 0.997 | 1.046×10-4 | 9.419×10-4 |
600 | 0.996 | 1.467×10-4 | 0.001 | |
700 | 0.999 | 2.476×10-5 | 1.236×10-4 | |
800 | 0.999 | 1.375×10-5 | 5.502×10-5 | |
线性模型 MR=at+b | 500 | 0.999 | 4.985×10-5 | 4.985×10-4 |
600 | 0.999 | 5.872×10-5 | 5.285×10-4 | |
700 | 0.999 | 6.192×10-5 | 3.715×10-4 | |
800 | 0.998 | 1.022×10-4 | 5.108×10-4 |
模型 | 功率/W | R2 | χ2 | RSS |
---|---|---|---|---|
Lewis模型 MR=exp(-kt) | 500 | 0.643 | 0.002 | 0.024 |
600 | 0.495 | 0.004 | 0.020 | |
700 | 0.557 | 0.004 | 0.022 | |
800 | 0.586 | 0.004 | 0.021 | |
Page模型 MR=exp(-ktn ) | 500 | 0.995 | 2.887×10-5 | 2.887×10-4 |
600 | 0.990 | 7.870×10-5 | 3.148×10-4 | |
700 | 0.990 | 8.146×10-5 | 4.073×10-4 | |
800 | 0.998 | 1.192×10-5 | 4.768×10-5 | |
修正Page模型(Ⅰ) MR=exp[-(kt) n ] | 500 | 0.995 | 2.883×10-5 | 2.883×10-4 |
600 | 0.990 | 7.574×10-5 | 3.029×10-4 | |
700 | 0.990 | 8.029×10-5 | 4.014×10-4 | |
800 | 0.998 | 1.189×10-5 | 4.756×10-5 | |
修正Page模型(Ⅱ) MR=aexp(-ktn ) | 500 | 0.995 | 3.566×10-5 | 3.209×10-4 |
600 | 0.978 | 1.639×10-4 | 4.918×10-4 | |
700 | 0.988 | 9.559×10-5 | 3.824×10-4 | |
800 | 0.998 | 1.456×10-5 | 4.369×10-5 | |
线性模型 MR=at+b | 500 | 0.909 | 5.728×10-4 | 0.006 |
600 | 0.978 | 1.679×10-4 | 6.717×10-4 | |
700 | 0.964 | 3.613×10-4 | 0.002 | |
800 | 0.953 | 5.970×10-4 | 0.002 |
Table 3 Statistical fitting results of the mathematical models in the decreasing-rate stage
模型 | 功率/W | R2 | χ2 | RSS |
---|---|---|---|---|
Lewis模型 MR=exp(-kt) | 500 | 0.643 | 0.002 | 0.024 |
600 | 0.495 | 0.004 | 0.020 | |
700 | 0.557 | 0.004 | 0.022 | |
800 | 0.586 | 0.004 | 0.021 | |
Page模型 MR=exp(-ktn ) | 500 | 0.995 | 2.887×10-5 | 2.887×10-4 |
600 | 0.990 | 7.870×10-5 | 3.148×10-4 | |
700 | 0.990 | 8.146×10-5 | 4.073×10-4 | |
800 | 0.998 | 1.192×10-5 | 4.768×10-5 | |
修正Page模型(Ⅰ) MR=exp[-(kt) n ] | 500 | 0.995 | 2.883×10-5 | 2.883×10-4 |
600 | 0.990 | 7.574×10-5 | 3.029×10-4 | |
700 | 0.990 | 8.029×10-5 | 4.014×10-4 | |
800 | 0.998 | 1.189×10-5 | 4.756×10-5 | |
修正Page模型(Ⅱ) MR=aexp(-ktn ) | 500 | 0.995 | 3.566×10-5 | 3.209×10-4 |
600 | 0.978 | 1.639×10-4 | 4.918×10-4 | |
700 | 0.988 | 9.559×10-5 | 3.824×10-4 | |
800 | 0.998 | 1.456×10-5 | 4.369×10-5 | |
线性模型 MR=at+b | 500 | 0.909 | 5.728×10-4 | 0.006 |
600 | 0.978 | 1.679×10-4 | 6.717×10-4 | |
700 | 0.964 | 3.613×10-4 | 0.002 | |
800 | 0.953 | 5.970×10-4 | 0.002 |
1 | 李天涛, 郭飞强, 王岩, 等. 微型流化床内松木屑和煤泥等温混合热解特性[J]. 化工学报, 2017, 68(10): 3923-3933. |
Li T T, Guo F Q, Wang Y, et al. Characterization of co-pyrolysis of pine sawdust and coal slime under isothermal conditions in micro fluidized bed reactor[J]. CIESC Journal, 2017, 68(10): 3923-3933. | |
2 | Wang H, Liu S L, Li X T, et al. Morphological and structural evolution of bituminous coal slime particles during the process of combustion[J]. Fuel, 2018, 218: 49-58. |
3 | Guo X, Li K, Zhou P, et al. Insight into the enhanced removal of water from coal slime via solar drying technology: dewatering performance, solar thermal efficiency, and economic analysis[J]. ACS Omega, 2022, 7(8): 6710-6720. |
4 | Norinaga K, Kumagai H, Hayashi J I, et al. Classification of water sorbed in coal on the basis of congelation characteristics[J]. Energy & Fuels, 1998, 12(3): 574-579. |
5 | Allardice D J, Evans D G. The-brown coal/water system (part 2): Water sorption isotherms on bed-moist Yallourn brown coal[J]. Fuel, 1971, 50(3): 236-253. |
6 | Karthikeyan M, Wu Z H, Mujumdar A S. Low-rank coal drying technologies—current status and new developments[J]. Drying Technology, 2009, 27(3): 403-415. |
7 | Vaxelaire J, Cézac P. Moisture distribution in activated sludges: a review[J]. Water Research, 2004, 38(9): 2215-2230. |
8 | Chen D D, Jiang Y F, Jiang X G, et al. The effect of anionic dispersants on the moisture distribution of a coal water slurry[J]. Fuel Processing Technology, 2014, 126: 122-130. |
9 | Pickles C A, Gao F, Kelebek S. Microwave drying of a low-rank sub-bituminous coal[J]. Minerals Engineering, 2014, 62: 31-42. |
10 | 周新志, 邵伦, 崔岢, 等. 褐煤微波干燥提质生产线的多级功率控制系统研究[J]. 化工学报, 2018, 69(S2): 274-282. |
Zhou X Z, Shao L, Cui K, et al. Research on multi-stage power control system of lignite microwave drying production line[J]. CIESC Journal, 2018, 69(S2): 274-282. | |
11 | Bennamoun L, Chen Z Y, Afzal M T. Microwave drying of wastewater sludge: experimental and modeling study[J]. Drying Technology, 2016, 34(2): 235-243. |
12 | Song Z L, Jing C M, Yao L S, et al. Microwave drying performance of single-particle coal slime and energy consumption analyses[J]. Fuel Processing Technology, 2016, 143: 69-78. |
13 | Song Z L, Yao L S, Jing C M, et al. Elucidation of the pumping effect during microwave drying of lignite[J]. Industrial & Engineering Chemistry Research, 2016, 55(11): 3167-3176. |
14 | Fu B A, Chen M Q, Song J J. Investigation on the microwave drying kinetics and pumping phenomenon of lignite spheres[J]. Applied Thermal Engineering, 2017, 124: 371-380. |
15 | Li L Z, Jiang X W, Qin X M, et al. Experimental study and energy analysis on microwave-assisted lignite drying[J]. Drying Technology, 2019, 37(8): 962-975. |
16 | Ge J, He Y, Zhu Y Q, et al. Combined conventional thermal and microwave drying process for typical Chinese lignite[J]. Drying Technology, 2019, 37(7): 813-823. |
17 | Li L Z, Jiang X W, Bian Z G, et al. Microwave drying performance of lignite with the assistance of biomass-derived char[J]. Drying Technology, 2019, 37(2): 173-185. |
18 | Idris A, Khalid K, Omar W. Drying of silica sludge using microwave heating[J]. Applied Thermal Engineering, 2004, 24(5/6): 905-918. |
19 | Mawioo P M, Rweyemamu A, Garcia H A, et al. Evaluation of a microwave based reactor for the treatment of blackwater sludge[J]. Science of the Total Environment, 2016, 548/549: 72-81. |
20 | Zhao P F, Liu C H, Qu W W, et al. Effect of temperature and microwave power levels on microwave drying kinetics of Zhaotong lignite[J]. Processes, 2019, 7(2): 74. |
21 | Fu B A, Chen M Q, Huang Y W, et al. Combined effects of additives and power levels on microwave drying performance of lignite thin layer[J]. Drying Technology, 2017, 35(2): 227-239. |
22 | Lin B Q, Cao X A, Liu T, et al. Experimental research on water migration-damage characteristics of lignite under microwave heating[J]. Energy & Fuels, 2021, 35(2): 1058-1069. |
23 | 王宝和. 干燥动力学研究综述[J]. 干燥技术与设备, 2009, 7(2): 51-56. |
Wang B H. Review of drying kinetics[J]. Drying Technology & Equipment, 2009, 7(2): 51-56. | |
24 | Han R, Zhou A N, Zhang N N, et al. A review of kinetic studies on evaporative dehydration of lignite[J]. Fuel, 2022, 329: 125445. |
25 | Zhu J F, Liu J Z, Wu J H, et al. Thin-layer drying characteristics and modeling of Ximeng lignite under microwave irradiation[J]. Fuel Processing Technology, 2015, 130: 62-70. |
26 | Hatibaruah D, Baruah D C, Sanyal S. Microwave drying characteristics of Assam ctc tea (Camellia assamica)[J]. Journal of Food Processing and Preservation, 2013, 37(4): 366-370. |
27 | Kantrong H, Tansakul A, Mittal G S. Drying characteristics and quality of shiitake mushroom undergoing microwave-vacuum drying and microwave-vacuum combined with infrared drying[J]. Journal of Food Science and Technology, 2014, 51(12): 3594-3608. |
28 | Arslan D, Özcan M M. Study the effect of sun, oven and microwave drying on quality of onion slices[J]. LWT-Food Science and Technology, 2010, 43(7): 1121-1127. |
29 | Hacifazlioglu H. Comparison of efficiencies of microwave and conventional electric ovens in the drying of slime-coal agglomerates[J]. International Journal of Coal Preparation and Utilization, 2017, 37(4): 169-178. |
30 | Guo J L, Zheng L, Li Z F. Microwave drying behavior, energy consumption, and mathematical modeling of sewage sludge in a novel pilot-scale microwave drying system[J]. Science of the Total Environment, 2021, 777: 146109. |
31 | Song Z L, Yao L S, Jing C M, et al. Drying behavior of lignite under microwave heating[J]. Drying Technology, 2017, 35(4): 433-443. |
32 | Li C, Liao J J, Yin Y, et al. Kinetic analysis on the microwave drying of different forms of water in lignite[J]. Fuel Processing Technology, 2018, 176: 174-181. |
33 | Zarein M, Samadi S H, Ghobadian B. Investigation of microwave dryer effect on energy efficiency during drying of apple slices[J]. Journal of the Saudi Society of Agricultural Sciences, 2015, 14(1): 41-47. |
34 | 朱炳辰, 宋维端, 房鼎业, 等. 多孔催化剂效率因子的多组分扩散模型(Ⅰ): 多组分扩散模型及数值计算方法[J]. 化工学报, 1984, 35(1): 33-40. |
Zhu B C, Song W D, Fang D Y, et al. Multicomponent diffusion model for effectiveness factors of porous catalysts (Ⅰ): Multicomponent diffusion model and numerical computing method[J]. Journal of Chemical Industry and Engineering (China), 1984, 35(1): 33-40. | |
35 | Özbek B, Dadali G. Thin-layer drying characteristics and modelling of mint leaves undergoing microwave treatment[J]. Journal of Food Engineering, 2007, 83(4): 541-549. |
36 | Song Z L, Jing C M, Yao L S, et al. Coal slime hot air/microwave combined drying characteristics and energy analysis[J]. Fuel Processing Technology, 2017, 156: 491-499. |
37 | Kocbek E, Garcia H A, Hooijmans C M, et al. Effects of the sludge physical-chemical properties on its microwave drying performance[J]. Science of the Total Environment, 2022, 828: 154142. |
[1] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[2] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[3] | Mengya LIAN, Yingying TAN, Lin WANG, Feng CHEN, Yifei CAO. Heating performance of air preheated integrated ground water heat pump air-conditioning system [J]. CIESC Journal, 2023, 74(S1): 311-319. |
[4] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[5] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[6] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[7] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[8] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[9] | Chunyu LIU, Huanyu ZHOU, Yue MA, Changtao YUE. Drying characteristics and mathematical model of CaO-conditioned oil sludge [J]. CIESC Journal, 2023, 74(7): 3018-3027. |
[10] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[11] | Quanbi ZHANG, Yijin YANG, Xujing GUO. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process [J]. CIESC Journal, 2023, 74(5): 2217-2227. |
[12] | Rong WANG, Yonghong WANG, Xinru ZHANG, Jinping LI. Construction of 6FDA-based polyimide carbon molecular sieve membranes for gas separation and its application [J]. CIESC Journal, 2023, 74(4): 1433-1445. |
[13] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[14] | Can YANG, Xueqi SUN, Minghua SHANG, Jian ZHANG, Xiangping ZHANG, Shaojuan ZENG. Research status and prospect of CO2 absorption and separation by phase-change ionic liquid systems [J]. CIESC Journal, 2023, 74(4): 1419-1432. |
[15] | Jin YU, Binbin YU, Xinsheng JIANG. Study on quantification methodology and analysis of chemical effects of combustion control based on fictitious species [J]. CIESC Journal, 2023, 74(3): 1303-1312. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 334
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 213
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||