CIESC Journal ›› 2023, Vol. 74 ›› Issue (5): 2217-2227.DOI: 10.11949/0438-1157.20230044
• Energy and environmental engineering • Previous Articles Next Articles
Quanbi ZHANG(), Yijin YANG(), Xujing GUO
Received:
2023-01-18
Revised:
2023-03-28
Online:
2023-06-29
Published:
2023-05-05
Contact:
Yijin YANG
通讯作者:
羊依金
作者简介:
张全碧(1998—),女,硕士研究生,zhangquanbi666@163.com
基金资助:
CLC Number:
Quanbi ZHANG, Yijin YANG, Xujing GUO. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process[J]. CIESC Journal, 2023, 74(5): 2217-2227.
张全碧, 羊依金, 郭旭晶. 芬顿氧化法对利福平制药废水中溶解性有机物的催化降解[J]. 化工学报, 2023, 74(5): 2217-2227.
名称 | 利福平/ (mg·L-1) | pH | CODCr/ (mg·L-1) | BOD5/ (mg·L-1) | SS/ (mg·L-1) | 色度 |
---|---|---|---|---|---|---|
利福平废水 | 10~20 | 6.8 | 90.02 | 21.55 | 7.63 | 10倍 |
Table 1 Water quality parameters
名称 | 利福平/ (mg·L-1) | pH | CODCr/ (mg·L-1) | BOD5/ (mg·L-1) | SS/ (mg·L-1) | 色度 |
---|---|---|---|---|---|---|
利福平废水 | 10~20 | 6.8 | 90.02 | 21.55 | 7.63 | 10倍 |
影响因素 | 实验设计 |
---|---|
反应时间/min | 10、20、30、60、120、180、240、300 |
pH | 1、2、3、4、5、6、7 |
硫酸亚铁浓度/(g·L-1) | 0.2、0.3、0.4、0.5、0.6 |
H2O2浓度/(ml·L-1) | 0.8、1.1、1.4、1.7、2.0 |
Table 2 Degradation experimental design
影响因素 | 实验设计 |
---|---|
反应时间/min | 10、20、30、60、120、180、240、300 |
pH | 1、2、3、4、5、6、7 |
硫酸亚铁浓度/(g·L-1) | 0.2、0.3、0.4、0.5、0.6 |
H2O2浓度/(ml·L-1) | 0.8、1.1、1.4、1.7、2.0 |
Fig.5 Synchronous map and asynchronous map (the white regions represent positive correlations, whereas the grey regions represent negative correlations)
相关系数 | Peak275 | Peak315 | Peak365 | Peak400 | Peak460 | Peak473 | Peak500 | Peak567 |
---|---|---|---|---|---|---|---|---|
R2 | 0.1967 | 0.4288 | 0.9084 | 0.9779 | 0.9111 | 0.8781 | 0.7801 | 0.5312 |
Table 3 Correlation between fluorescence intensity of each peak and COD
相关系数 | Peak275 | Peak315 | Peak365 | Peak400 | Peak460 | Peak473 | Peak500 | Peak567 |
---|---|---|---|---|---|---|---|---|
R2 | 0.1967 | 0.4288 | 0.9084 | 0.9779 | 0.9111 | 0.8781 | 0.7801 | 0.5312 |
各峰 | 1级 | 2级 | BMG | ||||
---|---|---|---|---|---|---|---|
k1/min-1 | R2 | k 2/(10-6min-1) | R2 | 1/b | 1/m | R2 | |
Peak275 | 0.0047 | 0.1265 | 6.8503 | 0.2509 | 0.9095 | 1.5805 | 0.9991 |
Peak315 | 0.0061 | 0.2880 | 2.5344 | 0.5008 | 0.9500 | 1.7687 | 0.9993 |
Peak365 | 0.0052 | 0.3974 | 2.0935 | 0.6367 | 0.8925 | 0.5964 | 0.9996 |
Peak400 | 0.0059 | 0.3954 | 1.6718 | 0.6847 | 0.9233 | 0.7703 | 0.9999 |
Peak460 | 0.0056 | 0.3576 | 1.5457 | 0.6429 | 0.9217 | 0.8450 | 0.9999 |
Peak473 | 0.0052 | 0.2348 | 2.7397 | 0.5437 | 0.9095 | 0.8013 | 0.9999 |
Peak500 | 0.0038 | 0.3283 | 0.8610 | 0.5207 | 0.8389 | 0.5456 | 0.9999 |
Peak567 | 0.0026 | 0.4143 | 0.7464 | 0.5401 | 0.6637 | 0.1770 | 0.9992 |
Table 4 The degradation kinetics of fluorescent substance
各峰 | 1级 | 2级 | BMG | ||||
---|---|---|---|---|---|---|---|
k1/min-1 | R2 | k 2/(10-6min-1) | R2 | 1/b | 1/m | R2 | |
Peak275 | 0.0047 | 0.1265 | 6.8503 | 0.2509 | 0.9095 | 1.5805 | 0.9991 |
Peak315 | 0.0061 | 0.2880 | 2.5344 | 0.5008 | 0.9500 | 1.7687 | 0.9993 |
Peak365 | 0.0052 | 0.3974 | 2.0935 | 0.6367 | 0.8925 | 0.5964 | 0.9996 |
Peak400 | 0.0059 | 0.3954 | 1.6718 | 0.6847 | 0.9233 | 0.7703 | 0.9999 |
Peak460 | 0.0056 | 0.3576 | 1.5457 | 0.6429 | 0.9217 | 0.8450 | 0.9999 |
Peak473 | 0.0052 | 0.2348 | 2.7397 | 0.5437 | 0.9095 | 0.8013 | 0.9999 |
Peak500 | 0.0038 | 0.3283 | 0.8610 | 0.5207 | 0.8389 | 0.5456 | 0.9999 |
Peak567 | 0.0026 | 0.4143 | 0.7464 | 0.5401 | 0.6637 | 0.1770 | 0.9992 |
1 | 杨娜. 生化处理利福平抗生素制药废水的实验研究[D]. 沈阳: 东北大学, 2009. |
Yang N. Treatment of experimental study on biochemical rifampicin antibiotic wastewater[D]. Shenyang: Northeastern University, 2009. | |
2 | Shafaati M, Miralinaghi M, Shirazi R H S M, et al. The use of chitosan/Fe3O4 grafted graphene oxide for effective adsorption of rifampicin from water samples[J]. Research on Chemical Intermediates, 2020, 46(12): 5231-5254. |
3 | Rodrigues-Silva F, Masceno G P, Panicio P P, et al. Removal of micropollutants by UASB reactor and post-treatment by Fenton and photo-Fenton: matrix effect and toxicity responses[J]. Environmental Research, 2022, 212: 113396. |
4 | 迟春娟, 付月彪, 张嗣炯. 利福平废水的絮凝和生化处理研究[J]. 环境污染治理技术与设备, 2000(2): 17-20. |
Chi C J, Fu Y B, Zhang S J. Research of flocculant and biochemical treatment of rifampin wastewater[J]. Technigues and Equipments for Environmental Pollution Control, 2000(2): 17-20. | |
5 | Kais H, Yeddou Mezenner N, Trari M. Biosorption of rifampicin from wastewater using cocoa shells product[J]. Separation Science and Technology, 2020, 55(11): 1984-1993. |
6 | Cai W L, Weng X L, Chen Z L. Highly efficient removal of antibiotic rifampicin from aqueous solution using green synthesis of recyclable nano-Fe3O4 [J]. Environmental Pollution, 2019, 247: 839-846. |
7 | 许征宇, 陈洁, 余进. 高级氧化技术在污水处理中的应用及研究进展[J]. 中国资源综合利用, 2020, 38(10): 112-114. |
Xu Z Y, Chen J, Yu J. Application and research progress of advanced oxidation technology in sewage treatment[J]. China Resources Comprehensive Utilization, 2020, 38(10): 112-114. | |
8 | Dang Thi Ngoc T, Thi H N, Nguyen Duc D, et al. Preparation and photocatalytic characterization of modified nano TiO2/Nd/rice husk ash material for rifampicin removal in aqueous solution[J]. Journal of Analytical Methods in Chemistry, 2022, 2022: 2084906. |
9 | Duarte F D S, Melo A L M D S, Ferro A B, et al. Magnetic zinc oxide/manganese ferrite composite for photodegradation of the antibiotic rifampicin[J]. Materials, 2022, 15(22): 8185. |
10 | Ebratkhahan M, Zarei M, Zaier Akpinar I, et al. One-pot synthesis of graphene hydrogel/M (M: Cu, Co, Ni) nanocomposites as cathodes for electrochemical removal of rifampicin from polluted water[J]. Environmental Research, 2022, 214: 113789. |
11 | Liu L J, Xu Q Y, Owens G, et al. Fenton-oxidation of rifampicin via a green synthesized rGO@nFe/Pd nanocomposite[J]. Journal of Hazardous Materials, 2021, 402: 123544. |
12 | da Silva Duarte J L, Solano A M S, Arguelho M L P M, et al. Evaluation of treatment of effluents contaminated with rifampicin by Fenton, electrochemical and associated processes[J]. Journal of Water Process Engineering, 2018, 22: 250-257. |
13 | Yu H B, Song Y H, Tu X, et al. Assessing removal efficiency of dissolved organic matter in wastewater treatment using fluorescence excitation emission matrices with parallel factor analysis and second derivative synchronous fluorescence[J]. Bioresource Technology, 2013, 144: 595-601. |
14 | 于本心, 张广彩, 孙迎雪. 应用二维相关同步荧光光谱研究市政污水中溶解性有机物组分[J]. 环境污染与防治, 2021, 43(6): 704-707. |
Yu B X, Zhang G C, Sun Y X. Applying tow-dimensional correlation synchronous fluorescence spectroscopy to study DOM fractions in municipal sewage[J]. Environmental Pollution & Control, 2021, 43(6): 704-707. | |
15 | 中华人民共和国环境保护部. 水质 化学需氧量的测定 重铬酸盐法: [S]. 北京: 中国环境出版社, 2017. |
Ministry of Environmental Protection of the People’s Republic of China. Water quality—Determination of the chemical oxygen demand—Dichromate method: [S]. Beijing: China Environmental Science Press, 2017. | |
16 | 国家环境保护总局. 水质 铁的测定 邻菲啰啉分光光度法(试行): [S]. 北京: 中国环境科学出版社, 2007. |
State Environmental Protection Administration. Water quality—Determination of iron—Phenanthroline spectrophotometry: [S]. Beijing: China Environmental Science Press, 2007. | |
17 | 黄燕, 杨永远, 杨湘智, 等. 钛盐光度法测定Fenton体系中过氧化氢浓度的试验研究[J]. 化工管理, 2020(15): 22-23. |
Huang Y, Yang Y Y, Yang X Z, et al. Experimental study on determination of hydrogen peroxide concentration in Fenton system by titanium salt spectrophotometry[J]. Chemical Enterprise Management, 2020(15): 22-23. | |
18 | Tunç S, Duman O, Gürkan T. Monitoring the decolorization of acid orange 8 and acid red 44 from aqueous solution using Fenton’s reagents by online spectrophotometric method: effect of operation parameters and kinetic study[J]. Industrial & Engineering Chemistry Research, 2013, 52(4): 1414-1425. |
19 | 吴锡峰, 杨恺. 芬顿氧化法对抗生素废水深度处理的实验研究[J]. 海峡科学, 2017(1): 19-21. |
Wu X F, Yang K. Experimental study on advanced treatment of antibiotic wastewater by Fenton oxidation[J]. Straits Science, 2017(1): 19-21. | |
20 | 赵云, 王丽萍, 何士龙, 等. Fenton试剂氧化对硝基酚中氧化还原电位的变化规律[J]. 环境污染与防治, 2011, 33(4): 58-61, 65. |
Zhao Y, Wang L P, He S L, et al. Variation of ORP during p-nitrophenol degradation by Fenton oxidation process[J]. Environmental Pollution & Control, 2011, 33(4): 58-61, 65. | |
21 | 徐祺琪, 陈维芳, 沈晓慧, 等. Fenton高级氧化技术去除水中有机污染物2-MIB的影响因素研究[J]. 水资源与水工程学报, 2014, 25(2): 158-161. |
Xu Q Q, Chen W F, Shen X H, et al. Study on factors affecting removal of organic pollutant 2-MIB in water by using Fenton advanced oxidation process[J]. Journal of Water Resources and Water Engineering, 2014, 25(2): 158-161. | |
22 | 郭旭晶, 彭涛, 王月, 等. 湖泊沉积物孔隙水溶解性有机质组成与光谱特性[J]. 环境化学, 2013, 32(1): 79-84. |
Guo X J, Peng T, Wang Y, et al. Study on the composition and spectral properties of dissolved organic matter extracted from lake sediment pore water in lake[J]. Environmental Chemistry, 2013, 32(1): 79-84. | |
23 | Chen W, Habibul N, Liu X Y, et al. FTIR and synchronous fluorescence heterospectral two-dimensional correlation analyses on the binding characteristics of copper onto dissolved organic matter[J]. Environmental Science & Technology, 2015, 49(4): 2052-2058. |
24 | 吴正龙. 腐殖质荧光及表面增强拉曼散射光谱分析[J]. 实验室研究与探索, 2011, 30(11): 227-230. |
Wu Z L. Fluorescence and SERS spectral analyses of humic substances[J]. Research and Exploration in Laboratory, 2011, 30(11): 227-230. | |
25 | Hur J, Jung K Y, Jung Y M. Characterization of spectral responses of humic substances upon UV irradiation using two-dimensional correlation spectroscopy[J]. Water Research, 2011, 45(9): 2965-2974. |
26 | Weishaar J L, Aiken G R, Bergamaschi B A, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J]. Environmental Science & Technology, 2003, 37(20): 4702-4708. |
27 | 宋凡浩, 栗婷婷, 张进, 等. 二维相关荧光光谱探究土壤富里酸亚组分的质子键合多相性[J]. 光谱学与光谱分析, 2019, 39(10): 3071-3077. |
Song F H, Li T T, Zhang J, et al. Proton binding heterogeneity in soil fulvic acid sub-fractions using two-dimensional correlation fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2019, 39(10): 3071-3077. | |
28 | Noda I. Close-up view on the inner workings of two-dimensional correlation spectroscopy[J]. Vibrational Spectroscopy, 2012, 60: 146-153. |
29 | An S F, Zhang G H, Wang T W, et al. High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced oxidation processes[J]. ACS Nano, 2018, 12(9): 9441-9450. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[3] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[4] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[5] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[6] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[7] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[8] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[9] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[10] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[11] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[12] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[13] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
[14] | Guangyu WANG, Kai ZHANG, Kaihua ZHANG, Dongke ZHANG. Heat and mass transfer and energy consumption for microwave drying of coal slime [J]. CIESC Journal, 2023, 74(6): 2382-2390. |
[15] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 102
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 262
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||