[1] |
KÖTZ R, CARLEN M. Principles and applications of electrochemical capacitors[J]. Eletrochim. Acta, 2000, 45(15/16): 2483-2498.
|
[2] |
BURKE A. Ultracapacitors: why, how, and where is the technology[J]. J. Power Sources, 2000, 91(1): 37-50.
|
[3] |
WINTER M, BRODD R J. What are batteries, fuel cells, and supercapacitors?[J]. Chem. Rev., 2004, 104(10): 4245-4270.
|
[4] |
SHARMA P, BHATTI T S. A review on electrochemical double-layer capacitors[J]. Energ. Convers. Manage., 2010, 51(12): 2901-2912.
|
[5] |
HAERRI V V, MARTINOVIC D. Supercapacitor module SAM for hybrid busses: an advanced energy storage specification based on experiences with the TOHYCO-rider bus project[C]//The 33rd Annual Conference of the IEEE Industrial Electronics Society (IECON). Taipei, China, 2007: 268-273.
|
[6] |
华黎. 超级电容公交车系统的原理和商业模式探索[J]. 能源技术, 2008, 29(6): 362-365, 370. HUA L. Exploration on the principle of ultracapacitor bus system and business mode[J]. Energy Technology, 2008, 29(6): 362-365, 370.
|
[7] |
FLETCHER S I, SILLARS F B, CARTER R C, et al. The effects of temperature on the performance of electrochemical double layer capacitors[J]. J. Power Sources, 2010, 195(21): 7484-7488.
|
[8] |
KÖTZ R, HAHNA M, GALLAY R. Temperature behavior and impedance fundamentals of supercapacitors[J]. J. Power Sources, 2006, 154 (2): 550-555.
|
[9] |
LIU P, VERBRUGGE M, SOUKIAZIAN S. Influence of temperature and electrolyte on the performance of activated-carbon supercapacitors[J]. J. Power Sources, 2006, 156(2): 712-718.
|
[10] |
SCHIFFER J, LINZEN D, SAUER D U. Heat generation in double layer capacitors[J]. J. Power Sources, 2006, 160(1): 765-772.
|
[11] |
RAFIK F, GUALOUS H, GALLAY R, et al. Frequency, thermal and voltage supercapacitor characterization and modeling[J]. J. Power Sources, 2007, 165(2): 928-934.
|
[12] |
GUALOUS H, BOUQUAIN D, BERTHON A, et al. Experimental study of supercapacitor serial resistance and capacitance variations with temperature[J]. J. Power Sources, 2003, 123(1): 86-93.
|
[13] |
GUALOUS H, LOUAHLIA H, GALLAY R A, et al. Supercapacitor thermal modeling and characterization in transient state for industrial applications[J]. IEEE T. Ind. Appl., 2009, 45(3): 1035-1044.
|
[14] |
LEE D H, KIM U S, SHIN C B, et al. Modelling of the thermal behavior of an ultracapacitor for a 42-V automotive electrical system[J]. J. Power Sources, 2008, 175(1): 664-668.
|
[15] |
WANG K, ZHANG L, JI B C, et al. The thermal analysis on the stackable supercapacitor[J]. Energy, 2013, 59(9): 440-444.
|
[16] |
GUALOUS H, LOUAHLIA H, GALLAY R. Supercapacitor characterization and thermal modelling with reversible and irreversible heat[J]. IEEE T. Power Electr., 2011, 11(26): 3402-3409.
|
[17] |
CHIANG C J, YANG J L, CHENG W C. Temperature and state-of-charge estimation in ultracapacitors based on extended Kalman filter[J]. J. Power Sources, 2013, 234(7): 234-243.
|
[18] |
BOHLEN O, KOWAL J, SAUER D U. Ageing behaviour of electrochemical double layer capacitors(Ⅱ): Lifetime simulation model for dynamic applications[J]. J. Power Sources, 2007, 173(1): 626-632.
|
[19] |
WU M S, WANG Y Y, WAN C C. Thermal behavior of nickel/metal hydride batteries during charge and discharge[J]. J. Power Sources, 1998, 74(2): 202-210.
|
[20] |
KIM J, NGUYEN T V, WHITE R E. Thermal mathematical modeling of a multicell common pressure vessel nickel-hydrogen battery[J]. J. Electrochem. Soc., 1992, 139 (10): 2781-2787.
|
[21] |
DEVAN S, SUBRAMANIAN V R, WHITE R E. An analytical solution for the impedance of a porous electrode[J]. J. Electrochem. Soc., 2004, 151(6): A905-A913.
|
[22] |
BURKE A, MILLER M. Testing of electrochemical capacitors: capacitance, resistance, energy density, and power capability[J]. Electrochim. Acta, 2010, 55 (25): 7538-7548.
|
[23] |
祁新春, 齐智平,韦统振, 等. 超级电容器恒流充放电热行为分析[J]. 高电压技术, 2009, 35(12): 3048-3053. QI X C, QI Z P, WEI T Z, et al. Thermal behavior of supercapacitor in constant current charge and discharge mode[J]. High Voltage Engineering, 2009, 35(12): 3048-3053.
|