[1] |
PIHLAJA R K, MILLER J P. Detection of distillation column flooding: US 20090314623[P]. 2009-06-17.
|
[2] |
方向晨, 程振民, 穆斌, 等. 以填料结构为模型参数的填料塔泛点预测新方法[J]. 华东理工大学学报(自然科学版), 2006, 32 (4): 370-373. DOI: 10.3969/j.issn.1006-3080.2006.04.002. FANG X C, CHENG Z M, MU B, et al. New method in prediction of flooding point in packed columns by incorporating packing structure as a model parameter[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2006, 32 (4): 370-373. DOI: 10.3969/j.issn.1006-3080.2006.04.002.
|
[3] |
MACKOWIAK J. Fluid Dynamics of Packed Columns[M]. Berlin: Springer, 2009.
|
[4] |
PICHE S, LARACHI F, GRANDJEAN B P A. Flooding capacity in packed towers: database, correlations, and analysis[J]. Industrial and Engineering Chemistry Research, 2001, 40 (1): 476-487. DOI: 10.1021/ie000486s.
|
[5] |
BRUNAZZI E, MACIAS-SALINAS R, VIVA A. Calculation procedure for flooding in packed columns using a channel model[J]. Chemical Engineering Communications, 2009, 196 (3): 330-341. DOI: 10.1080/00986440802359402.
|
[6] |
ENGEL V, STICHLMAIR J, GEIPEL W. Fluid dynamics of packings for gas-liquid contactors[J]. Chemical Engineering and Technology, 2001, 24 (5): 459-462. DOI: 10.1002/1521-4125(200105)24:53.0.CO;2-D.
|
[7] |
杨捷. 数据驱动的填料塔液泛气速预测模型与实时监测研究[D]. 杭州: 浙江工业大学, 2011. YANG J. Research on data-driven prediction model of flooding gas velocity and realtime flooding monitoring in packed column[D]. Hangzhou: Zhejiang University of Technology, 2011.
|
[8] |
KADLEC P, GABRYS B, STRANDT S. Data-driven soft sensors in the process industry[J]. Computers and Chemical Engineering, 2009, 33 (4): 795-814. DOI: 10.1016/j.compchemeng.2008.12.012.
|
[9] |
HUANG G B, ZHU Y, SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70: 489-501. DOI: 10.1016/j.neucom.2005.12.126.
|
[10] |
HUANG G B, WANG D H, LAN Y. Extreme learning machines: a survey[J]. International Journal of Machine Learning and Cybernetics, 2011, 2: 107-122. DOI: 10.1007/s13042-011-0019-y.
|
[11] |
FENG G, HUANG G B, LIN Q P. Error minimized extreme learning machine with growth of hidden nodes and incremental learning[J]. IEEE Transactions on Neural Networks, 2009, 20 (8): 1352-1356. DOI: 10.1109/TNN.2009.2024147.
|
[12] |
MICHE Y, SORJAMAA A, BAS P. OP-ELM: optimally pruned extreme learning machine[J]. IEEE Transactions on Neural Networks, 2010, 21 (1): 570-578. DOI: 10.1109/TNN.2009.2036259.
|
[13] |
HUANG G B, LI M B, CHEN L. Incremental extreme learning machine with fully complex hidden nodes[J]. Neurocomputing, 2008, 71: 1-7. DOI: 10.1016/j.neucom.2007.07.025.
|
[14] |
HUANG G B, ZHOU H M, DING X J. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2012, 42 (2): 513-529. DOI: 10.1109/TSMCB.2011.2168604.
|
[15] |
YU Q, MICHE Y. Regularized extreme learning machine for regression with missing data[J]. Neurocomputing, 2013, 102: 45-51. DOI: 10.1016/j.neucom.2012.02.040.
|
[16] |
刘学艺, 李平, 郜传厚. 极限学习机的快速留一交叉验证算法[J]. 上海交通大学学报, 2011, 45 (8): 1140-1145. LIU X Y, LI P, GAO C H. Fast leave one out cross validation algorithm of extreme learning machine[J]. Journal of Shanghai Jiaotong University, 2011, 45 (8): 1140-1145.
|
[17] |
周丽春, 刘毅, 金福江. 一种非线性系统在线辨识的选择性递推方法[J]. 化工学报, 2015, 66 (1): 272-277. DOI: 10.11949/j.issn. 0438-1157.20141481. ZHOU L C, LIU Y, JIN F J. A selection recursive method for online identification of nonlinear systems[J]. CIESC Journal, 2015, 66 (1): 272-277. DOI: 10.11949/j.issn.0438-1157.20141481.
|
[18] |
LIU Y, GAO Z L, LI P, WANG H Q. Just-in-time kernel learning with adaptive parameter selection for soft sensor modeling of batch processes[J]. Industrial and Engineering Chemistry Research, 2012, 51 (11): 4313-4327. DOI: 10.1021/ie201650u.
|
[19] |
LIU Y, CHEN J H. Integrated soft sensor using just-in-time support vector regression and probabilistic analysis for quality prediction of multi-grade processes[J]. Journal of Process Control, 2013, 23 (6): 793-804. DOI: 10.1016/j.jprocont.2013.03.008.
|
[20] |
LIU Y, CHEN T, CHEN J H. Auto-switch Gaussian process regression-based probabilistic soft sensors for industrial multigrade processes with transitions[J]. Industrial and Engineering Chemistry Research, 2015, 54 (18): 5037-5047. DOI: 10.1021/ie504185j.
|