[1] |
沈向阳, 丁静, 彭强, 等. 高温熔盐在太阳能热发电中的应用[J]. 广东化工, 2007, 34(11):49-52.SHEN X Y, DING J, PENG Q, et al. Application of high temperature molten salt to solar thermal power[J]. Guangdong Chemical Industry, 2007, 34(11):49-52.
|
[2] |
杨武龙, 姜洪涛, 吴靥汝, 等. 熔盐在新能源领域的应用[J]. 过程工程学报, 2012, 12(5):893-900.YANG W L, JIANG H T, WU Y R, et al. Progress in the application of molten salts for new energy production[J]. The Chinese Journal of Process Engineering, 2012, 12(5):893-900.
|
[3] |
闫云飞, 张智恩, 张力, 等. 太阳能利用技术及其应用[J]. 太阳能学报, 2012, 33(增刊):47-56.YAN Y F, ZHANG Z E, ZHANG L, et al. Application and utilization technology of solar energy[J]. Acta Energiae Solaris Sinica, 2012, 33(Suppl.):47-56.
|
[4] |
孙李平, 吴玉庭, 马重芳. 熔融盐热物性的测量方法[J]. 太阳能, 2007, (5):36-38.SUN L P, WU Y T, MA C F. Physical Characteristics measurements of molten salt[J]. Solar Energy, 2007, (5):36-38.
|
[5] |
CHOI S U S, EASTMAN J A. Enhancement thermal conductivity of fluids with nanoparticles[C]//Argonne National Lab. 1995 International Mechanical Engineering Congress and Exhibition. Washington, DC:USDOE, 1995:99-105.
|
[6] |
DUDDA B, SHIN D. Investigation of molten salt nanomaterial as thermal energy storage in concentrated solar power[C]//ASME. 2012 International Mechanical Engineering Congress and Exposition. Houston:American Society of Mechanical Engineers, 2012:813-818.
|
[7] |
郭顺松, 骆仲泱, 王涛, 等. SiO2纳米流体粘度研究[J]. 硅酸盐通报, 2006, 25(5):52-55.GUO S S, LUO Z Y, WANG T, et al. Viscosity of monodisperse silica nanofluids[J]. Bulletin of the Chinese Ceramic Society, 2006, 25(5):52-55.
|
[8] |
EASTMAN J A, CHOI U S, LI S, et al. Enhanced thermal conductivity through the development of nanofluid[C]//KOMARNENI S, PARKER J C, WOLLENBERGER H J. Materials Research Society Symposium Proceedings. Volume 457. Pennsylvania:Material Research Society, 1997:3-11.
|
[9] |
王涛, 骆仲泱, 郭顺松, 等. 可控纳米流体的制备及热导率研究[J]. 浙江大学学报(工学版), 2007, 41(3):514-518.WANG T, LUO Z Y, GUO S S, et al. Preparation of controllable nanofluids and research on thermal conductivity[J]. Journal of Zhejiang University (Engineering Science), 2007, 41(3):514-518.
|
[10] |
CHOPKAR M, SUDARSHAN S, DAS P K, et al. Effect of particle size on thermal conductivity of nanofluid[J]. Metallurgical and Materials Transactions A, 2008, 39A(7):1535-1542.
|
[11] |
XU J, YU B M, ZOU M Q, et al. A new model for heat conduction of nanofluids based on fractal distributions of nanoparticles[J]. J. Phys. D:Appl. Phys., 2006, 39(20):4486-4490
|
[12] |
ALBADR J, TAYAL S, ALASADI M, et al. Heat transfer through heat exchanger using Al2O3 nanofluid at different concentrations[J]. Case Studies in Thermal Engineering, 2013, 1(1):38-44.
|
[13] |
SCHULLER M, LITTLE F, MALIK D, et al. Molten salt-carbon nanotube thermal energy storage for concentrating solar power systems final report[R]. Texas:Texas Engineering Experiment Station, 2012.
|
[14] |
TSAI C Y, CHIEN H T, DING P P, et al. Effect of structural character of gold nanoparticles nanofluid on heat pipe thermal performance[J]. Materials Letters, 2004, 58(9):1461-1465.
|
[15] |
JANZ G J, TOMKINS R P T, ALLEN C B, et al. Molten salts:Volume 4, Part 3, Bromides and mixtures, iodides and mixtures-electrical conductance, density, viscosity, and surface tension data[J]. Journal of Physical and Chemical Reference Data 1977, 6(2):409-596.
|
[16] |
史建峰, 熊亚选, 吴玉庭, 等. 四元溴化盐熔体表面张力特性[J]. 化工学报, 2015, 66(10):3820-3825.SHI J F, XIONG Y X, WU Y T, et al. Surface tension of quaternary bromide salts[J]. CIESC Journal, 2015, 66(10):3820-3825.
|
[17] |
张玉辉, 刘海波, 赵丰东. 探讨用差示扫描量热法(DSC)测量相变材料相变温度和相变焓[J]. 中国建材科技, 2006, 15(4):35-37.ZHANG Y H, LIU H B, ZHAO F D. Differential scanning calorimeter (DSC)-determination of temperature and enthalpy of melting and crystallization for phase change material[J]. China Building Materials Science & Technology, 2006, 15(4):35-37.
|
[18] |
吴迪. 基于太阳能热发电系统的纳米颗粒提升熔盐储热特性的研究[D]. 北京:华北电力大学, 2013.WU D. Effects of nanoparticles on enhancing the thermodynamics characteristic of molten salt for solar thermal power system[D]. Beijing:North China Electric Power University, 2013.
|
[19] |
HE B, MARTIN V, SETTERWALL F. Phase transition temperature ranges and storage density of paraffin wax phase change materials[J]. Energy, 2004, 29(11):1785-1804.
|
[20] |
SHIN D, BANERJEE D. Enhanced specific heat capacity of molten salt-metal oxide nanofluid as heat transfer fluid for solar thermal applications[C]//SAE International. Power Systems Conference. Warrendale:SAE International, 2010:1734-1739.
|