[1] |
ELBEL S. Historical and present developments of ejector refrigeration systems with emphasis on transcritical carbon dioxide air-conditioning applications[J]. International Journal of Refrigeration, 2011, 34(7):1545-1561.
|
[2] |
魏新利, 王中华, 耿利红, 等. 压缩制冷系统节流损失及应对方案研究[J]. 郑州大学学报(工学版), 2015, 36(3):68-72. WEI X L, WANG Z H, GENG L H, et al. Study on the throttling losses in compression refrigeration systems and solutions[J]. Journal of Zhengzhou University (Engineering Science), 2015, 36(3):68-72.
|
[3] |
ELBEL S, LAWRENCE N. Review of recent developments in advanced ejector technology[J]. International Journal of Refrigeration, 2016, 62:1-18.
|
[4] |
SUMERU K, NASUTION H, ANI F N. A review on two-phase ejector as an expansion device in vapor compression refrigeration cycle[J]. Renewable and Sustainable Energy Reviews, 2012, 16(7):4927-4937.
|
[5] |
WANG F, LI D Y, ZHOU Y. Analysis for the ejector used as expansion valve in vapor compression refrigeration cycle[J]. Applied Thermal Engineering, 2016, 96:576-582.
|
[6] |
王菲. 压缩/喷射制冷循环中喷射器引射室的最优压降[J]. 低温与超导, 2012, 40(11):65-69. WANG F. The optimum pressure drop of ejector suction chamber in compression/ejection refrigeration cycle[J]. Cryogenics & Superconductivity, 2012, 40(11):65-69.
|
[7] |
王菲, 吕恒林, 冯伟, 等. 压缩/喷射制冷循环中两相喷射器性能[J]. 化工学报, 2012, 63(10):3094-3100. WANG F, LÜ H L, FENG W, et al. Performance of two-phase ejector in compression/ejection refrigeration cycle[J]. CIESC Journal, 2012, 63(10):3094-3100.
|
[8] |
魏新利, 汤本凯, 马新灵, 等. 两相喷射器对压缩-喷射制冷系统性能的影响研究[J]. 制冷与空调, 2014, 28(1):1-8. WEI X L, TANG B K, MA X L, et al. Influence of two-phase ejector on performance of compression/ejection refrigeration system[J]. Refrigeration and Air Conditioning, 2014, 28(1):1-8.
|
[9] |
GENG L H, LIU H D, WEI X L, et al. Energy and exergy analyses of a bi-evaporator compression/ejection refrigeration cycle[J]. Energy Conversion and Management, 2016, 130:71-80.
|
[10] |
WANG X, YU J L. Experimental investigation on two-phase driven ejector performance in a novel ejector enhanced refrigeration system[J]. Energy Conversion and Management, 2016, 111:391-400.
|
[11] |
BESAGNI G, MEREU R, INZOLI F. Ejector refrigeration:a comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2016, 53:373-407.
|
[12] |
GAY N H. Refrigerating system:US1836318[P]. 1931-12-15.
|
[13] |
DISAWAS S, WONGWISES S. Experimental investigation on the performance of the refrigeration cycle using a two-phase ejector as an expansion device[J]. International Journal of Refrigeration, 2004, 27(6):587-594.
|
[14] |
WONGWISES S, DISAWAS S. Performance of the two-phase ejector expansion refrigeration cycle[J]. International Journal of Heat and Mass Transfer, 2005, 48(19):4282-4286.
|
[15] |
CHAIWONGSA P, WONGWISES S. Effect of throat diameters of the ejector on the performance of the refrigeration cycle using a two-phase ejector as an expansion device[J]. International Journal of Refrigeration, 2007, 30(4):601-608.
|
[16] |
CHAIWONGSA P, WONGWISES S. Experimental study on R-134a refrigeration system using a two-phase ejector as an expansion device[J]. Applied Thermal Engineering, 2008, 28(5):467-477.
|
[17] |
LUCAS C, KOEHLER J. Experimental investigation of the COP improvement of a refrigeration cycle by use of an ejector[J]. International Journal of Refrigeration, 2012, 35(6):1595-1603.
|
[18] |
LI H, CAO F, BU X, et al. Performance characteristics of R1234yf ejector-expansion refrigeration cycle[J]. Applied Energy, 2014, 121(5):96-103.
|
[19] |
耿利红, 马新灵, 魏新利, 等. 喷射器几何结构对压缩/喷射制冷循环性能的影响研究[J]. 高校化学工程学报, 2015, 29(5):1073-1081. GENG L H, MA X L, WEI X L, et al. Effects of ejector geometry on performance of compression/ejection refrigeration cycle[J].J.Chem. Eng. Chinese Univ., 2015, 29(5):1073-1081.
|
[20] |
REDDICK C, MERCADIER Y, OUZZANE M. Experimental study of an ejector refrigeration system[C]//International Refrigeration and Air Conditioning Conference. Purdue, West Lafayette, USA, 2012:Paper 1176.
|
[21] |
LAWRENCE N, ELBEL S. Experimental and analytical investigation of automotive ejector air conditioning cycles using low-pressure refrigerants[C]//International Refrigeration and Air Conditioning Conference. Purdue, West Lafayette, USA, 2012:Paper 1169.
|
[22] |
BOUMARAF L, HABERSCHILL P, LALLEMAND A. Investigation of a novel ejector expansion refrigeration system using the working fluid R134a and its potential substitute R1234yf[J]. International Journal of Refrigeration, 2014, 45:148-159.
|
[23] |
OSHITANI H, YAMANAKA Y, TAKEUCHI H, et al. Vapor compression cycle having ejector:US7254961[P]. 2007-8-14.
|
[24] |
YAMADA E, NISHIJIMA H, MATSUI H, et al. Next-generation ejector cycle for truck-transport refrigerator[J]. SAE International Journal of Commercial Vehicles, 2009, 2:58-63.
|
[25] |
YAMADA E, NISHIJIMA H, MATSUI H, et al. Ejector system for small truck refrigerators[J]. Refrigeration Technology, 2010, (2):35-39.
|
[26] |
LAWRENCE N, ELBEL S. Theoretical and practical comparison of two-phase ejector refrigeration cycles including First and Second Law analysis[J]. International Journal of Refrigeration, 2013, 36(4):1220-1232.
|
[27] |
LAWRENCE N, ELBEL S. Experimental investigation of a two-phase ejector cycle suitable for use with low-pressure refrigerants R134a and R1234yf[J]. International Journal of Refrigeration, 2014, 38:310-322.
|
[28] |
ÜNAL ?, YILMAZ T. Thermodynamic analysis of the two-phase ejector air-conditioning system for buses[J]. Applied Thermal Engineering, 2015, 79:108-116.
|
[29] |
HENRY R E, FAUSKE H K. The two-phase critical flow of one-component mixtures in nozzles, orifices, and short tubes[J]. Journal of Heat Transfer, 1971, 93(2):179-187.
|
[30] |
ELBEL S. Experimental and analytical investigation of a two-phase ejector used for expansion work recovery in a transcritical R744 air-conditioning system[D].Illinois:University of Illinois at Urbana-Champaign, 2007.
|
[31] |
KHALIL A, FATOUH M, ELGENDY E. Ejector design and theoretical study of R134a ejector refrigeration cycle[J]. International Journal of Refrigeration, 2011, 34(7):1684-1698.
|