CIESC Journal ›› 2023, Vol. 74 ›› Issue (S1): 272-279.DOI: 10.11949/0438-1157.20221508

• Energy and environmental engineering • Previous Articles     Next Articles

Experimental investigation on heating performance of vapor-injection CO2 heat pump for electric vehicles at -30℃

Tianyang YANG1,2(), Huiming ZOU1,2(), Hui ZHOU3, Chunlei WANG3, Changqing TIAN1,2   

  1. 1.Key Laboratory of Technology on Space Energy Conversion, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.Songz Automobile Air Conditioning Co. , Ltd. , Shanghai 201108, China
  • Received:2022-11-21 Revised:2022-12-21 Online:2023-09-27 Published:2023-06-05
  • Contact: Huiming ZOU

-30℃电动汽车补气式CO2热泵制热性能实验研究

杨天阳1,2(), 邹慧明1,2(), 周晖3, 王春磊3, 田长青1,2   

  1. 1.中国科学院理化技术研究所空间功热转换重点实验室,北京 100190
    2.中国科学院大学,北京 100049
    3.上海加冷松芝汽车空调股份有限公司,上海 201108
  • 通讯作者: 邹慧明
  • 作者简介:杨天阳(1995—),男,博士研究生,yangtianyang18@mails.ucas.ac.cn
  • 基金资助:
    国家自然科学基金项目(51976229);吉林省与中科院科技合作高技术产业化专项资金项目(2021SYHZ0017)

Abstract:

To improve the heating performance of electric vehicle heat pumps in extremely cold environments, an experimental bench of the vapor-injection CO2 heat pump with a flash tank was built and the heating performance under the working conditions of -30℃ was studied in this paper. The experimental results show that when the inlet air temperature is 20℃, the discharge temperature of the no vapor-injection system reaches 176.1℃, and the discharge temperature is reduced by 30.7℃ through the injected refrigerant vapor, and the increase in the total refrigerant flow rate and the pressure of the gas cooler increase the heating capacity and coefficient of performance (COP) by 74.1% and 43.9%, respectively. The inlet air temperature is controlled to increase from 0℃ to 20℃, and the outlet air temperature of the vapor-injection system is increased from 11.9℃ to 32.7℃, but the heating capacity is reduced by 3%, the energy consumption is increased by 43.2%, and the COP is reduced from 2.14 to 1.45. With the increase of the inlet air temperature, the vapor-injection heat pump cycle gradually changes from subcritical to transcritical, and the discharge temperature and pressure increase, but the discharge enthalpy is unchanged.

Key words: electric vehicles, vapor-injection heat pump, CO2, heating performance, inlet air temperature

摘要:

为提高极寒环境下电动汽车热泵的供热性能,搭建了二次节流闪发的中间补气式CO2热泵实验台架,并开展了车外-30℃工况下的制热性能研究。实验结果显示,车内进风温度20℃时,无补气系统的排气温度达到176.1℃,通过中间补气排气温度降低了30.7℃,且制冷剂总流量的增加与气冷器侧压力的升高使制热量和COP分别提升了74.1%和43.9%。控制车内进风温度由0℃升高至20℃,补气系统的出风温度从11.9℃升高到32.7℃,但制热量降低了3%,系统能耗增加了43.2%,COP从2.14下降到1.45。随着进风温度的升高,补气热泵循环逐步从亚临界变为跨临界,排气温度和压力均增大,但排气焓值基本不变。

关键词: 电动汽车, 补气热泵, CO2, 制热性能, 进风温度

CLC Number: