CIESC Journal ›› 2023, Vol. 74 ›› Issue (S1): 272-279.DOI: 10.11949/0438-1157.20221508
• Energy and environmental engineering • Previous Articles Next Articles
Tianyang YANG1,2(), Huiming ZOU1,2(), Hui ZHOU3, Chunlei WANG3, Changqing TIAN1,2
Received:
2022-11-21
Revised:
2022-12-21
Online:
2023-09-27
Published:
2023-06-05
Contact:
Huiming ZOU
杨天阳1,2(), 邹慧明1,2(), 周晖3, 王春磊3, 田长青1,2
通讯作者:
邹慧明
作者简介:
杨天阳(1995—),男,博士研究生,yangtianyang18@mails.ucas.ac.cn
基金资助:
CLC Number:
Tianyang YANG, Huiming ZOU, Hui ZHOU, Chunlei WANG, Changqing TIAN. Experimental investigation on heating performance of vapor-injection CO2 heat pump for electric vehicles at -30℃[J]. CIESC Journal, 2023, 74(S1): 272-279.
杨天阳, 邹慧明, 周晖, 王春磊, 田长青. -30℃电动汽车补气式CO2热泵制热性能实验研究[J]. 化工学报, 2023, 74(S1): 272-279.
部件 | 参数 |
---|---|
压缩机 | 形式:双转子式中间补气压缩机 |
排量:8.0 cm³/r | |
频率范围:80~166 Hz | |
车外换热器 | 类型和材料:微通道平行流换热器,铝 |
尺寸:628 mm × 317 mm × 16 mm | |
设计:两流程,16-15 | |
车内气冷器 | 类型和材料:微通道平行流换热器,铝 |
尺寸:160 mm × 140 mm × 32 mm | |
设计:四流程,8-7-7-8 | |
中间换热器 | 类型和材料:板式换热器,316不锈钢 |
尺寸:425 mm × 203 mm × 42 mm | |
板片数量:12 | |
闪发罐 | 材料:铝 |
尺寸:Φ76 mm × 32 mm | |
EEV1 | 开度控制:0~5 V直流电压控制0~576步进电机 |
EEV2 | 开度控制:0~5 V直流电压控制0~1012步进电机 |
Table 1 Parameters of main components of the vapor-injection CO2 heat pump system
部件 | 参数 |
---|---|
压缩机 | 形式:双转子式中间补气压缩机 |
排量:8.0 cm³/r | |
频率范围:80~166 Hz | |
车外换热器 | 类型和材料:微通道平行流换热器,铝 |
尺寸:628 mm × 317 mm × 16 mm | |
设计:两流程,16-15 | |
车内气冷器 | 类型和材料:微通道平行流换热器,铝 |
尺寸:160 mm × 140 mm × 32 mm | |
设计:四流程,8-7-7-8 | |
中间换热器 | 类型和材料:板式换热器,316不锈钢 |
尺寸:425 mm × 203 mm × 42 mm | |
板片数量:12 | |
闪发罐 | 材料:铝 |
尺寸:Φ76 mm × 32 mm | |
EEV1 | 开度控制:0~5 V直流电压控制0~576步进电机 |
EEV2 | 开度控制:0~5 V直流电压控制0~1012步进电机 |
参数 | 类型 | 不确定度 |
---|---|---|
制冷剂温度 | PT100,铂电阻温度传感器 | ±0.2℃ |
制冷剂压力 | 电压型压力传感器 | ±0.25%满量程 |
制冷剂质量流率 | 科里奥利质量流量计 | ±0.15%满量程,250 kg/h,350 kg/h |
空气流量 | 喷嘴 | ±1% |
制冷剂充注量 | 电子秤 | ±0.01 kg |
压缩机输入功 | 数字功率计,8720 | ±0.5% |
空气侧温度 | PT00,精密铂电阻温度传感器 | ±0.1℃ |
Table 2 The uncertainty of the test instruments
参数 | 类型 | 不确定度 |
---|---|---|
制冷剂温度 | PT100,铂电阻温度传感器 | ±0.2℃ |
制冷剂压力 | 电压型压力传感器 | ±0.25%满量程 |
制冷剂质量流率 | 科里奥利质量流量计 | ±0.15%满量程,250 kg/h,350 kg/h |
空气流量 | 喷嘴 | ±1% |
制冷剂充注量 | 电子秤 | ±0.01 kg |
压缩机输入功 | 数字功率计,8720 | ±0.5% |
空气侧温度 | PT00,精密铂电阻温度传感器 | ±0.1℃ |
系统 | 车外环境温度/℃ | 车内进风温度/℃ | 压缩机转速/(r/min) | EEV1开度/% | EEV2开度/% |
---|---|---|---|---|---|
无补气 | -30 | 20 | 2400 | 12.8 | 23.7 |
补气 | -30 | 20 | 2400 | 12.8 | 23.7 |
补气 | -30 | 0,5,10,15,20 | 2400 | 26.0 | 22.0 |
Table 3 Test conditions
系统 | 车外环境温度/℃ | 车内进风温度/℃ | 压缩机转速/(r/min) | EEV1开度/% | EEV2开度/% |
---|---|---|---|---|---|
无补气 | -30 | 20 | 2400 | 12.8 | 23.7 |
补气 | -30 | 20 | 2400 | 12.8 | 23.7 |
补气 | -30 | 0,5,10,15,20 | 2400 | 26.0 | 22.0 |
热泵 系统 | 实验结果 | 补气系统性能提升 | |||
---|---|---|---|---|---|
制热量/W | COP | 排气温度/℃ | ΔCOP/% | ΔQ/% | |
补气 | 2260.40 | 1.41 | 145.4 | 43.9 — | 74.1 — |
无补气 | 1298.47 | 0.98 | 176.1 |
Table 4 Performance comparison of CO2 heat pump systems with/without vapor injection
热泵 系统 | 实验结果 | 补气系统性能提升 | |||
---|---|---|---|---|---|
制热量/W | COP | 排气温度/℃ | ΔCOP/% | ΔQ/% | |
补气 | 2260.40 | 1.41 | 145.4 | 43.9 — | 74.1 — |
无补气 | 1298.47 | 0.98 | 176.1 |
1 | 张子琦, 李万勇, 张成全, 等. 电动汽车冬季负荷特性研究[J]. 制冷学报, 2016, 37(5): 39-44. |
Zhang Z Q, Li W Y, Zhang C Q, et al. A study on heat load character of EV in cold climate[J]. Journal of Refrigeration, 2016, 37(5): 39-44. | |
2 | 江挺候, 张胜昌, 康志军. 电动汽车热泵系统研究进展[J]. 制冷技术, 2012(2): 71-74. |
Jiang T H, Zhang S C, Kang Z J. Study on heat pump system for electric vehicle[J]. Chinese Journal of Refrigeration Technology, 2012(2): 71-74. | |
3 | 王颖, 施骏业, 陈江平, 等. 采用三换热器和四通阀的两种车用热泵系统的对比研究[J]. 制冷学报, 2014, 35(1): 71-76. |
Wang Y, Shi J Y, Chen J P, et al. Comparative study of two kinds of automotive air conditioning system with three heat exchangers and four-way valve[J]. Journal of Refrigeration, 2014, 35(1): 71-76. | |
4 | Ma Y T, Liu Z Y, Tian H. A review of transcritical carbon dioxide heat pump and refrigeration cycles[J]. Energy, 2013, 55(1): 156-172. |
5 | Zhang J F, Qin Y, Wang C C. Review on CO2 heat pump water heater for residential use in Japan[J]. Renewable and Sustainable Energy Reviews, 2015, 50(5): 1383-1391. |
6 | 陈子丹, 罗会龙, 刘锦春, 等. 寒冷地区CO2空气源热泵供暖运行性能分析[J]. 化工学报, 2018, 69(9): 4030-4036. |
Chen Z D, Luo H L, Liu J C, et al. Analysis of heating performance of CO2 air-source heat pump in cold region[J]. CIESC Journal, 2018, 69(9): 4030-4036. | |
7 | Kim M H, Pettersen J, Bullard C W. Fundamental process and system design issues in CO2 vapor compression systems[J]. Progress in energy and combustion science, 2004, 30(2): 119-174. |
8 | 武悦, 郑铭铸, 杨坚, 等. 电动汽车CO2热泵系统采暖实验研究及模拟分析[J].制冷技术, 2019, 39(5): 33-38. |
Wu Y, Zheng M Z, Yang J, et al. Experimental study and simulation analysis on heating performance of CO2 heat pump system for electric vehicles[J]. Chinese Journal of Refrigeration Technology, 2019, 39(5): 33-38. | |
9 | 王丹东, 张科, 俞彬彬, 等. 适用于-20℃环境的CO2汽车热泵系统的开发及性能测试[J]. 制冷学报, 2018, 39(2): 14-21. |
Wang D D, Zhang K, Yu B B, et al. Development and performance evaluation of CO2 automotive heat pump system applied to -20℃ environment[J]. Journal of Refrigeration, 2018, 39(2): 14-21. | |
10 | 王丹东, 陈江平, 俞彬彬, 等. CO2车用热泵空调系统技术研发及性能提升[J]. 制冷学报, 2018, 39(5): 47-52. |
Wang D D, Chen J P, Yu B B, et al. Technology development and performance improvement of CO2 automobile heat pump air conditioning system[J]. Journal of Refrigeration, 2018, 39(5): 47-52. | |
11 | 顾潇, 邹慧明, 韩欣欣, 等. 基于余热回收的电动客车喷射补气热泵的制热性能[J]. 化工学报, 2021, 72(S1): 326-335. |
Gu X, Zou H M, Han X X, et al. Heating performance of vapor injection heat pump based on waste heat recovery[J]. CIESC Journal, 2021, 72(S1): 326-335. | |
12 | Han X X, Zou H M, Tian C Q, et al. Numerical study on the heating performance of a novel integrated thermal management system for the electric bus[J]. Energy, 2019, 186(7): 115812. |
13 | Han X X, Zou H M, Xu H B, et al. Experimental study on vapor injection air source heat pump with internal heat exchanger for electric bus[J]. Energy Procedia, 2019, 158(1): 4147-4153. |
14 | Yan G, Jia Q L, Bai T. Experimental investigation on vapor injection heat pump with a newly designed twin rotary variable speed compressor for cold regions[J]. International Journal of Refrigeration, 2016, 62(10): 232-241. |
15 | Redón A, Navarro-Peris E, Pitarch M, et al. Analysis and optimization of subcritical two-stage vapor injection heat pump systems[J]. Applied Energy, 2014, 124(2): 231-240. |
16 | Cho I Y, Seo H J, Kim D, et al. Performance comparison between R410A and R32 multi-heat pumps with a sub-cooler vapor injection in the heating and cooling modes[J]. Energy, 2016, 112(6): 179-187. |
17 | Qin F, Xue Q F, Zou H M, et al. Experimental investigation on heating performance of heat pump for electric vehicles at -20℃ ambient temperature[J]. Energy Conversion and Management, 2015, 102(1): 39-49. |
18 | Baek C, Heo J, Jung J, et al. Effects of vapor injection techniques on the heating performance of a CO2 heat pump at low ambient temperatures[J]. International Journal of Refrigeration, 2014, 43(3): 26-35. |
19 | Peng X, Wang D B, Wang G H, et al. Numerical investigation on the heating performance of a transcritical CO2 vapor-injection heat pump system[J]. Applied Thermal Engineering, 2020, 166: 114656. |
20 | Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. |
[1] | Xusheng LIU, Zeyang LI, Yusen YANG, Min WEI. Research progress on electrocatalytic carbon dioxide reduction to gaseous products [J]. CIESC Journal, 2024, 75(7): 2385-2408. |
[2] | Tingting ZHAO, Lixiang YAN, Fuli TANG, Minzhi XIAO, Ye TAN, Liubin SONG, Zhongliang XIAO, Lingjun LI. Research progress on design strategies and reaction mechanisms of photo-assisted Li-CO2 battery catalysts [J]. CIESC Journal, 2024, 75(5): 1750-1764. |
[3] | Di WANG, Weiqian CHEN, Lingfang SUN, Yunlong ZHOU. Research of dynamic characteristics of photothermal coupled transcritical compressed carbon dioxide energy storage cycle [J]. CIESC Journal, 2024, 75(5): 2047-2059. |
[4] | Xu MA, Yadong TENG, Jie LIU, Yulu WANG, Peng ZHANG, Lianhai ZHANG, Wanlong YAO, Jing ZHAN, Qingbai WU. CO2 capture and separation from flue gas by spraying hydrate method [J]. CIESC Journal, 2024, 75(5): 2001-2016. |
[5] | Baofeng WANG, Shugao WANG, Fangqin CHENG. Progress in preparation and CO2 adsorption properties of solid waste-based sulfur-doped porous carbon materials [J]. CIESC Journal, 2024, 75(2): 395-411. |
[6] | Tenglong XIANG, Zhihong WANG, Gui WANG, Long LI. Research on multifunctional integrated system for cold energy cascade utilization of liquefied natural gas [J]. CIESC Journal, 2024, 75(10): 3401-3413. |
[7] | Qiong SUN, Fuxin YANG, Houzhang TAN, Xiaopo WANG. Simulation study of CO2 capture from flue gas by deep eutectic solvent [J]. CIESC Journal, 2024, 75(10): 3705-3717. |
[8] | Ruohan ZHAO, Mengmeng HUANG, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Flow and mass transfer study of CO2 absorption by nanofluid in T-shaped microchannels [J]. CIESC Journal, 2024, 75(1): 221-230. |
[9] | Baomin DAI, Qilong WANG, Shengchun LIU, Jianing ZHANG, Xinhai LI, Fandi ZONG. Thermodynamic performance analysis of combined cooling and heating system based on combination of CO2 with the zeotropic refrigerant assisted subcooled [J]. CIESC Journal, 2023, 74(S1): 64-73. |
[10] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[11] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[12] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[13] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[14] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[15] | Can YANG, Xueqi SUN, Minghua SHANG, Jian ZHANG, Xiangping ZHANG, Shaojuan ZENG. Research status and prospect of CO2 absorption and separation by phase-change ionic liquid systems [J]. CIESC Journal, 2023, 74(4): 1419-1432. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 317
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 135
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||