CIESC Journal ›› 2023, Vol. 74 ›› Issue (9): 3946-3955.DOI: 10.11949/0438-1157.20230474
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Yang WANG1,2(), Yongqiang DAI2, Wei ZENG2()
Received:
2023-05-12
Revised:
2023-07-24
Online:
2023-11-20
Published:
2023-09-25
Contact:
Wei ZENG
通讯作者:
曾炜
作者简介:
王阳(1995—)男,硕士研究生,wangy1423@163.com
基金资助:
CLC Number:
Yang WANG, Yongqiang DAI, Wei ZENG. Study of the enhanced thermoelectric properties of ionic hydrogel materials by 2,5-dihydroxybenzenesulfonate[J]. CIESC Journal, 2023, 74(9): 3946-3955.
王阳, 戴永强, 曾炜. 2,5-二羟基苯磺酸增强离子水凝胶材料热电性能的研究[J]. 化工学报, 2023, 74(9): 3946-3955.
Add to citation manager EndNote|Ris|BibTeX
Fig.6 AC impedance profiles and conductivity changes of HQS ionic thermoelectric hydrogels with different concentrations and pure acid ionic hydrogels
ΔT/K | Vc/V | Ic/mA | Va/V | Ia/mA | |Vc/Va| | |Ic/Ia| |
---|---|---|---|---|---|---|
5 | -0.38 | -3.32 | 0.42 | 3.02 | 0.90 | 1.10 |
10 | -0.44 | -4.52 | 0.45 | 4.22 | 0.98 | 1.07 |
15 | -0.46 | -6.46 | 0.46 | 6.68 | 1.00 | 0.97 |
20 | -0.41 | -7.06 | 0.42 | 7.92 | 0.98 | 0.89 |
25 | -0.37 | -6.63 | 0.39 | 7.63 | 0.95 | 0.87 |
30 | -0.35 | -5.72 | 0.38 | 7.07 | 0.92 | 0.81 |
Table 1 Cyclic voltammetry data variation of HQS ionic thermoelectric hydrogels
ΔT/K | Vc/V | Ic/mA | Va/V | Ia/mA | |Vc/Va| | |Ic/Ia| |
---|---|---|---|---|---|---|
5 | -0.38 | -3.32 | 0.42 | 3.02 | 0.90 | 1.10 |
10 | -0.44 | -4.52 | 0.45 | 4.22 | 0.98 | 1.07 |
15 | -0.46 | -6.46 | 0.46 | 6.68 | 1.00 | 0.97 |
20 | -0.41 | -7.06 | 0.42 | 7.92 | 0.98 | 0.89 |
25 | -0.37 | -6.63 | 0.39 | 7.63 | 0.95 | 0.87 |
30 | -0.35 | -5.72 | 0.38 | 7.07 | 0.92 | 0.81 |
1 | Forman C, Muritala I K, Pardemann R, et al. Estimating the global waste heat potential[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 1568-1579. |
2 | Quickenden T I, Mua Y. A review of power generation in aqueous thermogalvanic cells[J]. Journal of the Electrochemical Society, 1995, 142(11): 3985-3994. |
3 | Li T, Zhang X, Lacey S D, et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting[J]. Nature Materials, 2019, 18(6): 608-613. |
4 | Chipman J. The Soret effect[J]. Journal of the American Chemical Society, 1926, 48(10): 2577-2589. |
5 | Alam H, Ramakrishna S. A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials[J]. Nano Energy, 2013, 2(2): 190-212. |
6 | Wu X, Gao N W, Jia H Y, et al. Thermoelectric converters based on ionic conductors[J]. Chemistry-An Asian Journal, 2021, 16(2): 129-141. |
7 | Choi P, Jalani N H, Datta R. Thermodynamics and proton transport in Nafion(Ⅰ): Membrane swelling, sorption, and ion-exchange equilibrium[J]. Journal of the Electrochemical Society, 2005, 152(3): E84-E89. |
8 | Choi P, Jalani N H, Datta R. Thermodynamics and proton transport in Nafion(Ⅱ): Proton diffusion mechanisms and conductivity[J]. Journal of the Electrochemical Society, 2005, 152(3): E123-E130. |
9 | Choi P, Jalani N H, Datta R. Thermodynamics and proton transport in Nafion(Ⅲ): Proton transport in Nafion/sulfated ZrO2 nanocomposite membranes[J]. Journal of the Electrochemical Society, 2005, 152(8): A1548-A1554. |
10 | Jalani N H, Choi P, Datta R. TEOM: a novel technique for investigating sorption in proton-exchange membranes[J]. Journal of Membrane Science, 2005, 254(1/2): 31-38. |
11 | Alt H, Binder H, Köhling A, et al. Investigation into the use of quinone compounds-for battery cathodes[J]. Electrochimica Acta, 1972, 17(5): 873-887. |
12 | Guo B S, Hoshino Y, Gao F, et al. Thermocells driven by phase transition of hydrogel nanoparticles[J]. Journal of the American Chemical Society, 2020, 142(41): 17318-17322. |
13 | Chen L B, Bai H, Huang Z F, et al. Mechanism investigation and suppression of self-discharge in active electrolyte enhanced supercapacitors[J]. Energy & Environmental Science, 2014, 7(5): 1750-1759. |
14 | Deng Q J, Tian C C, Luo Z B, et al. Organic 2,5-dihydroxy-1,4-benzoquinone potassium salt with ultrahigh initial coulombic efficiency for potassium-ion batteries[J]. Chemical Communications, 2020, 56(81): 12234-12237. |
15 | Frackowiak E, Meller M, Menzel J, et al. Redox-active electrolyte for supercapacitor application[J]. Faraday Discussions, 2014, 172: 179-198. |
16 | Komura T, Yamaguchi T, Furuta K, et al. Irreversible transformation of polypyrrole-bound viologen with two-electron reduction in acidic aqueous solutions[J]. Journal of Electroanalytical Chemistry, 2002, 534(2): 123-130. |
17 | Zhang Z J, Chen X Y. Illustrating the effect of electron withdrawing and electron donating groups adherent to p-hydroquinone on supercapacitor performance: the cases of sulfonic acid and methoxyl groups[J]. Electrochimica Acta, 2018, 282: 563-574. |
18 | Wang Y, Dai Y Q, Li L B, et al. Proton-coupled electron transfer aided thermoelectric energy conversion and storage[J]. Angewandte Chemie International Edition, 2023, 62(35): 202219136. |
19 | 冉广芬, 马海州, 孟瑞英, 等. 四苯硼钠-季铵盐容量法快速测钾[J]. 盐湖研究, 2009, 17(2): 39-42. |
Ran G F, Ma H Z, Meng R Y, et al. Rapid determination of potassium content by sodium tetraphenylboron-quaternary ammonium salt volumetric method[J]. Journal of Salt Lake Research, 2009, 17(2): 39-42. | |
20 | Gao H C, Guo B K, Song J E, et al. A composite gel-polymer/glass-fiber electrolyte for sodium-ion batteries[J]. Advanced Energy Materials, 2015, 5(9): 1402235. |
21 | Wang H, Hsu J H, Yi S I, et al. Thermally driven large N-type voltage responses from hybrids of carbon nanotubes and poly(3,4-ethylenedioxythiophene) with tetrakis(dimethylamino)ethylene[J]. Advanced Materials, 2015, 27(43): 6855-6861. |
22 | Kim S L, Lin H T, Yu C. Thermally chargeable solid-state supercapacitor[J]. Advanced Energy Materials, 2016, 6(18): 1600546. |
23 | Zhao D, Wang H, Khan Z U, et al. Ionic thermoelectric supercapacitors[J]. Energy & Environmental Science, 2016, 9(4): 1450-1457. |
24 | Li Y C, Li Q K, Zhang X B, et al. 3D hierarchical electrodes boosting ultrahigh power output for gelatin-KCl-FeCN4–/ 3– ionic thermoelectric cells[J]. Advanced Energy Materials, 2022, 12(14): 2103666. |
25 | Buckingham M A, Marken F, Aldous L. The thermoelectrochemistry of the aqueous iron(ⅱ)/iron(ⅲ) redox couple: significance of the anion and pH in thermogalvanic thermal-to-electrical energy conversion[J]. Sustainable Energy & Fuels, 2018, 2(12): 2717-2726. |
26 | Wu J, Black J J, Aldous L. Thermoelectrochemistry using conventional and novel gelled electrolytes in heat-to-current thermocells[J]. Electrochimica Acta, 2017, 225: 482-492. |
27 | Zhao D, Martinelli A, Willfahrt A, et al. Polymer gels with tunable ionic Seebeck coefficient for ultra-sensitive printed thermopiles[J]. Nature Communications, 2019, 10: 1093. |
28 | Duan J J, Feng G, Yu B Y, et al. Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest[J]. Nature Communications, 2018, 9: 5146. |
29 | Cheng H L, He X, Fan Z, et al. Flexible quasi-solid state ionogels with remarkable Seebeck coefficient and high thermoelectric properties[J]. Advanced Energy Materials, 2019, 9(32): 1901085. |
30 | Han C G, Qian X, Li Q K, et al. Giant thermopower of ionic gelatin near room temperature[J]. Science, 2020, 368(6495): 1091-1098. |
[1] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[2] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[3] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
[4] | Xuehong WU, Linlin LUAN, Yanan CHEN, Min ZHAO, Cai LYU, Yong LIU. Preparation and thermal properties of degradable flexible phase change films [J]. CIESC Journal, 2023, 74(4): 1818-1826. |
[5] | Chi YIN, Zhengguo ZHANG, Ziye LING, Xiaoming FANG. Combining paraffin@silica nanocapsules with carbon fiber to develop a phase change thermal interface material for efficient heat dissipation [J]. CIESC Journal, 2023, 74(4): 1795-1804. |
[6] | Jianxin CHEN, Ruijie ZHU, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Preparation of cellulose-derived biomass porous carbon and its supercapacitor performance [J]. CIESC Journal, 2022, 73(9): 4194-4206. |
[7] | Chuyue CAI, Xiaoming FANG, Zhengguo ZHANG, Ziye LING. Enhancing heat dissipation performance of paraffin/silicone rubber phase change thermal pad by introducing carbon nanotubes [J]. CIESC Journal, 2022, 73(7): 2874-2884. |
[8] | Xinbin NIE, Dehao ZHANG, Weicheng YAN. Research progress of functional microbubble materials [J]. CIESC Journal, 2021, 72(8): 3984-3996. |
[9] | HAN Xiao,CHEN Yuting,SU Baogen,BAO Zongbi,ZHANG Zhiguo,YANG Yiwen,REN Qilong,YANG Qiwei. Advances in adsorbents for hexane isomers separation [J]. CIESC Journal, 2021, 72(7): 3445-3465. |
[10] | MA Jiazhuang, CHEN Ying, LI Kaitao, LIN Yanjun. Research progress on magnesium-based intercalated functional materials [J]. CIESC Journal, 2021, 72(6): 2922-2933. |
[11] | GAO Wa, RAN Xiangkun, ZHAO Hanqing, ZHAO Yufei. Research progress of catalytic materials based on Mg-based layered double hydroxides [J]. CIESC Journal, 2021, 72(6): 2934-2956. |
[12] | CHEN Rundao, ZHENG Fang, GUO Lidong, YANG Qiwei, ZHANG Zhiguo, YANG Yiwen, REN Qilong, BAO Zongbi. Advancements in adsorption separation of Xe/Kr noble gases [J]. CIESC Journal, 2021, 72(1): 14-26. |
[13] | Wei ZHOU, Li CHEN, Jingcheng DU, Luxi TAN, Lichun DONG, Cailong ZHOU. Bio-inspired fog harvesting materials: from fundamental research to promotional strategy [J]. CIESC Journal, 2020, 71(10): 4532-4552. |
[14] | Shuang WEN, Xiaojie JU, Rui XIE, Wei WANG, Zhuang LIU, Liangyin CHU. Fabrication and controlled-release properties of intestinal-targeted Ca-alginate-based capsules [J]. CIESC Journal, 2020, 71(8): 3797-3806. |
[15] | Yating ZHANG, Bochao ZHANG, Jianlan ZHANG, Keke LI, Yongqiang DANG, Yingfeng DUAN. Research progress in “bottom-up” chemical synthesis of nanographenes [J]. CIESC Journal, 2020, 71(6): 2628-2642. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||