[1] |
Gantzer P A, Bryant L D, Little J C. Controlling soluble iron and manganese in a water-supply reservoir using hypolimnetic oxygenation [J]. Water Res., 2009, 43 (5): 1285-1294.
|
[2] |
Middea A, Fernandes T L A P, Neumann R, et al. Evaluation of Fe(Ⅲ) adsorption onto palygorskite surfaces [J]. Appl. Surf. Sci., 2013, 282 (10): 253-258.
|
[3] |
Üçer A, Uyan?k A, Çay S, et al. Immobilisation of tannic acid onto activated carbon to improve Fe(Ⅲ) adsorption [J]. Sep. Purif. Technol., 2005, 44 (1): 11-17.
|
[4] |
Ngah W S W, Ghani S A, Kamari A. Adsorption behaviour of Fe(II) and Fe(Ⅲ) ions in aqueous solution on chitosan and cross-linked chitosan beads [J]. Bioresour. Technol., 2005, 96 (4): 443-450.
|
[5] |
Jawor A, Hoek E M V. Removing cadmium ions from water via nanoparticle enhanced ultrafiltration [J]. Environ. Sci. Technol., 2010, 44 (7): 2570-2576.
|
[6] |
Shahalam A M, Al-Harthy A, Al-Zawhry A. Feed water pretreatment in RO systems: unit processes in the Middle East [J]. Desalination, 2002, 150 (3): 235-245.
|
[7] |
Mohammad A W, Teow Y H, Ang W L, et al. Nanofiltration membranes review [J]. Desalination, 2015, 356: 226-254.
|
[8] |
Mohd K S, Salmiaton T A, Shaffreza S. Concentration profile behavioral from digestate television printed circuit board for metal recovery via electrolysis [J]. J. Appl. Sci., 2011, 11 (13): 2436-2439.
|
[9] |
姜雪辉, 范伟, 霍明昕, 等. 离子组成对氧化石墨烯在饱和多孔介质中迁移行为的影响 [J]. 化工学报, 2015, 66 (4): 1484-1490.
|
|
JIANG X H, FAN W , HUO M X, et al. Effect of cations composition on transport of graphene oxide in saturated porous media [J]. CIESC Journal, 2015, 66 (4): 1484-1490.
|
[10] |
Huang H B, Song Z G, Wei N, et al. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes [J]. Nature Commun., 2013, 4 (4): 345-350.
|
[11] |
zhang y, zhang s, gao j, et al. Layer-by-layer construction of graphene oxide (GO) framework composite membranes for highly efficient heavy metal removal [J]. J. Membr. Sci., 2016, 515: 230-237.
|
[12] |
Hu X, Yu Y, Hou W, et al. Effects of particle size and pH value on the hydrophilicity of graphene oxide [J]. Appl. Surf. Sci., 2013, 273 (19): 118-121.
|
[13] |
Dreyer D R, Park S, Bzelawski C W, et al. The chemistry of graphene oxide [J]. Chem. Soc. Rev., 2010, 39 (1): 228-240.
|
[14] |
Xia S J, Ni M Z, Zhu T R, et al. Ultrathin graphene oxide nanosheet membranes with various d-spacing assembled using the pressure-assisted filtration method for removing natural organic matter [J]. Desalination, 2015, 371 (1): 78-87.
|
[15] |
陈芳妮, 孙晓君, 魏金枝, 等. 磁性三乙烯四胺氧化石墨烯对Cu2+的吸附行为 [J]. 化工学报, 2016, 67 (5): 1949-1956.
|
|
CHEN F N, SUN X J, WEI J Z, et al. Adsorption behavior of magnetic triethylene tetramine-graphene oxide nanocomposite for Cu2+ [J]. CIESC Journal, 2016, 67 (5): 1949-1956.
|
[16] |
Lee H, Dellatore S M, Miller W M, et al. Mussel-inspired surface chemistry for multifunctional coatings [J]. Science, 2007, 318: 426-430.
|
[17] |
Guo L Q, Liu Q, Li G L, et al. A mussel-inspired polydopamine coating as a versatile platform for the in situ synthesis of graphene-based nanocomposites [J]. Nanoscale, 2012, 4 (19): 5864-5867.
|
[18] |
Gao H C, Sun Y M, Zhou J J, et al. Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification [J]. ACS Appl. Mater. Interf., 2012, 5 (2): 425-432.
|
[19] |
Yan J, Yang L, Lin M, et al. Polydopamine spheresas active templates for convenient synthesis of various nano structures [J]. Small, 2013, 9 (4): 596-603.
|
[20] |
Liu Y L, Ai K L, Lu L H. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields [J]. Chem. Rev., 2014, 114 (9): 5057-5115.
|
[21] |
Yang H C, Luo J Q, Lv Y, et al. Surface engineering of polymer membranes via mussel-inspired chemistry [J]. J. Membr. Sci., 2015, 483: 42-59.
|
[22] |
Lee H, Rho J, Messersmith P B. Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings [J]. Adv. Mater., 2009, 21: 431-434.
|
[23] |
Martin M, Salazar P, Villalonga R, et al. Preparation of core-shell Fe3O4@poly(dopamine) magnetic nanoparticles for biosensor construction [J]. J. Mater. Chem. B, 2014, 2: 739-746.
|
[24] |
Liu R, Mahurin S M, Li C, et al. Dopamine as a carbon source: the controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites [J]. Angew. Chem. Int. Ed., 2011, 50: 6799-6802.
|
[25] |
Kong J H, Yee W A, Yang L P, et al. Highly electrically conductive layered carbon derived from polydopamine and its functions in SnO2-based lithium ion battery anodes [J]. Chem. Commun., 2012, 48: 10316-10318.
|
[26] |
Hu M, Mi B X. Enabling graphene oxide nanosheets as water separation membranes [J]. Environ. Sci. Technol., 2013, 47 (8): 3715-3723.
|
[27] |
张小亮, 李创, 王彩云, 等. 一种用于放射性废水处理的氧化石墨烯基复合膜:105664738A [P]. 2016-06-15.
|
|
ZHANG X L, LI C, WANG C Y, et al. An method of graphene oxide based composite membranes for radioactive wastewater treatment: 105664738A [P]. 2016-06-15.
|
[28] |
Hu X L, Qi R R, Zhu J, et al. Preparation and properties of dopamine reduced graphene oxide and its composites of epoxy [J]. J. Appl. Polym. Sci., 2014, 131 (2): 39754.
|
[29] |
Zhao Z W, Li J X, Wen T, et al. Surface functionalization graphene oxide by polydopamine for high affinity of radionuclides [J]. Colloids Surf. A: Physicochem. Eng. Aspects., 2015, 482: 258-266.
|
[30] |
Fan Q H, Shao D D, Hu J, et al. Comparison of Ni2+ sorption to bare and ACT-graft attapulgites: effect of pH, temperature and foreign ions [J]. Surf. Sci., 2008, 602 (3): 778-785.
|
[31] |
DONG Z H, ZHANG F, WANG D, et al. Polydopamine-mediated surface-functionalization of graphene oxide for heavy metal ions removal [J]. J. Solid State Chem., 2015, 224: 88-93.
|