CIESC Journal ›› 2023, Vol. 74 ›› Issue (7): 3058-3067.DOI: 10.11949/0438-1157.20230437
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Jiali GE(), Tuxiang GUAN(), Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO()
Received:
2023-05-05
Revised:
2023-06-15
Online:
2023-08-31
Published:
2023-07-05
Contact:
Tuxiang GUAN, Ningzhong BAO
葛加丽(), 管图祥(), 邱新民, 吴健, 沈丽明, 暴宁钟()
通讯作者:
管图祥,暴宁钟
作者简介:
葛加丽(1998—),女,硕士研究生,202061104005@njtech.edu.cn
基金资助:
CLC Number:
Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode[J]. CIESC Journal, 2023, 74(7): 3058-3067.
葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067.
Fig.1 Schematic illustration of the synthetic procedure of FeF3/C/HRGO nanocomposites (a); XPS diagram (b), Raman spectrum (c) of HGO and HRGO; AFM image (d) and the corresponding height graph (e) of FeF3/C/HRGO
Fig.2 TEM images of HGO (a), Fe2O3/C (b) and FeF3/C/HRGO nanocomposites (c); SEM image of Fe2O3/C nanoparticles (d); SEM images of Fe3O4/C/HRGO (e) and FeF3/C/HRGO (f) nanocomposites; EDS element mapping images of FeF3/C/HRGO nanocomposites [(g)—(j)]
Fig.3 XRD patterns of Fe2O3/C/HGO, Fe3O4/C/HRGO, and FeF3/C/HRGO nanocomposites (a); TG curve of FeF3/C/HRGO nanocomposites (b); XPS spectrum of FeF3/C/HRGO nanocomposites (c); High-resolution XPS spectrums of C 1s (d), Fe 2p (e), and F 1s (f) of FeF3/C/HRGO nanocomposites
Fig.4 CV curves of FeF3/C/HRGO nanocomposites (a); Charge/discharge curves of FeF3/C/HRGO nanocomposites (b); Rate performance of FeF3/C/HRGO and FeF3/C/RGO nanocomposites (c); Long-term cycling stability of FeF3/C/HRGO and FeF3/C/RGO nanocomposites at 0.1 A·g-1 (d)
1 | 程伟江, 汪何琦, 高翔, 等. 锂离子电池硅基负极电解液成膜添加剂的研究进展[J]. 化工学报, 2023, 74(2): 571-584. |
Cheng W J, Wang H Q, Gao X, et al. Research progress on film-forming electrolyte additives for Si-based lithium-ion batteries[J]. CIESC Journal, 2023, 74(2): 571-584. | |
2 | Cao Y L, Li M, Lu J, et al. Bridging the academic and industrial metrics for next-generation practical batteries[J]. Nature Nanotechnology, 2019, 14(3): 200-207. |
3 | Wang C Y, Liu T, Yang X G,et al. Fast charging of energy-dense lithium-ion batteries[J]. Nature, 2022, 611(7936): 485-490. |
4 | 李景坤, 廖小珍, 马紫峰. LiFePO4正极材料制备过程研究进展[J]. 化工进展, 2010, 29(8): 1508. |
Li J K, Liao X Z, Ma Z F. Research progress in preparation process of LiFePO4 cathode materials for lithium ion battery[J]. Chemical Industry and Engineering Progress, 2010, 29(8): 1508. | |
5 | Guo F Y, Xie Y F, Zhang Y X. Low-temperature strategy to synthesize single-crystal LiNi0.8Co0.1Mn0.1O2 with enhanced cycling performances as cathode material for lithium-ion batteries[J]. Nano Research, 2022, 15(3): 2052-2059. |
6 | Li H Y, Liu A, Zhang N, et al. An unavoidable challenge for Ni-rich positive electrode materials for lithium-ion batteries[J]. Chemistry of Materials, 2019, 31(18): 7574-7583. |
7 | Pang E L, Olson G B, Schuh C A. Low-hysteresis shape-memory ceramics designed by multimode modelling[J]. Nature, 2022, 610(7932): 491-495. |
8 | Wu F X, Srot V, Chen S Q, et al. Metal-organic framework-derived nanoconfinements of CoF2 and mixed-conducting wiring for high-performance metal fluoride-lithium battery[J]. ACS Nano, 2021, 15(1): 1509-1518. |
9 | Turcheniuk K, Bondarev D, Singhal V, et al. Ten years left to redesign lithium-ion batteries[J]. Nature, 2018, 559(7715): 467-470. |
10 | Ali G, Lee J, Chang W, et al. Lithium intercalation mechanism into FeF3·0.5H2O as a highly stable composite cathode material[J]. Scientific Reports, 2017, 7: 42237. |
11 | Amatucci G G. Stabilized iron fluoride cathodes[J]. Nature Materials, 2019, 18(12): 1275-1276. |
12 | Huang Q, Turcheniuk K, Ren X L, et al. Cycle stability of conversion-type iron fluoride lithium battery cathode at elevated temperatures in polymer electrolyte composites[J]. Nature Materials, 2019, 18(12): 1343-1349. |
13 | Fan X L, Hu E Y, Ji X, et al. High energy-density and reversibility of iron fluoride cathode enabled via an intercalation-extrusion reaction[J]. Nature Communications, 2018, 9: 2324. |
14 | Wu F X, Yushin G. Conversion cathodes for rechargeable lithium and lithium-ion batteries[J]. Energy & Environmental Science, 2017, 10(2): 435-459. |
15 | Li L S, Jacobs R, Gao P, et al. Origins of large voltage hysteresis in high-energy-density metal fluoride lithium-ion battery conversion electrodes[J]. Journal of the American Chemical Society, 2016, 138(8): 2838-2848. |
16 | Chun J, Jo C, Sahgong S, et al. Ammonium fluoride mediated synthesis of anhydrous metal fluoride-mesoporous carbon nanocomposites for high-performance lithium ion battery cathodes[J]. ACS Applied Materials & Interfaces, 2016, 8(51): 35180-35190. |
17 | Li L P, Zhu J H, Xu M W, et al. In situ engineering toward core regions: a smart way to make applicable FeF3@carbon nanoreactor cathodes for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(21): 17992-18000. |
18 | Cheng Q X, Pan Y Y, Chen Y Y, et al. Nanostructured iron fluoride derived from Fe-based metal-organic framework for lithium ion battery cathodes[J]. Inorganic Chemistry, 2020, 59(17): 12700-12710. |
19 | Wu F X, Srot V, Chen S Q, et al. 3D honeycomb architecture enables a high‐rate and long‐life iron (Ⅲ) fluoride-lithium battery[J]. Advanced Materials, 2019, 31(43): 1905146. |
20 | Zhang Q, Zhang Y, Yin Y Y, et al. Packing FeF3⋅0.33H2O into porous graphene/carbon nanotube network as high volumetric performance cathode for lithium ion battery[J]. Journal of Power Sources, 2020, 447: 227303. |
21 | Chen S Y, Lin J F, Shi Q, et al. Nanoscale iron fluoride supported by three-dimensional porous graphene as long-life cathodes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(8): 080506. |
22 | Yang Y, Gao L, Shen L M, et al. Self-assembled FeF3 nanocrystals clusters confined in carbon nanocages for high-performance Li-ion battery cathode[J]. Journal of Alloys and Compounds, 2021, 873: 159799. |
23 | Chen J, Yao B W, Li C, et al. An improved Hummers method for eco-friendly synthesis of graphene oxide[J]. Carbon, 2013, 64: 225-229. |
24 | 胡兵兵, 杨束, 李彦, 等. 免黏结剂V2O5和Fe2O3柔性电极的构建及在超级电容器中的应用[J]. 化工学报, 2020, 71(10): 4836-4846. |
Hu B B, Yang S, Li Y, et al. Construction of free binder V2O5 and Fe2O3 flexible electrode and its application in supercapacitor[J]. CIESC Journal, 2020, 71(10): 4836-4846. | |
25 | Zhao X, Hayner C M, Kung M C, et al. Photothermal-assisted fabrication of iron fluoride-graphene composite paper cathodes for high-energy lithium-ion batteries[J]. Chemical Communications, 2012, 48(79): 9909-9911. |
26 | Liu L, Zhou M, Wang X Y, et al. Synthesis and electrochemical performance of spherical FeF3/ACMB composite as cathode material for lithium-ion batteries[J]. Journal of Materials Science, 2012, 47(4): 1819-1824. |
27 | Maulana A Y, Futalan C M, Kim J. MOF-derived FeF2 nanoparticles@graphitic carbon undergoing in situ phase transformation to FeF3 as a superior sodium-ion cathode material[J]. Journal of Alloys and Compounds, 2020, 840: 155719. |
28 | Chu Q X, Xing Z C, Ren X B, et al. Reduced graphene oxide decorated with FeF3 nanoparticles: facile synthesis and application as a high capacity cathode material for rechargeable lithium batteries[J]. Electrochimica Acta, 2013, 111: 80-85. |
29 | Zhai J R, Lei Z Y, Rooney D, et al. Top-down synthesis of iron fluoride/reduced graphene nanocomposite for high performance lithium-ion battery[J]. Electrochimical Acta, 2019, 313: 497-504. |
30 | Wang F, Robert R, Chernova N A, et al. Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes[J]. Journal of the American Chemical Society, 2011, 133(46): 18828-18836. |
31 | Hu X B, Ma M H, Mendes R G, et al. Li-storage performance of binder-free and flexible iron fluoride@graphene cathodes[J]. Journal of Materials Chemistry A, 2015, 3(47): 23930-23935. |
32 | Zhai J R, Lei Z Y, Rooney D, et al. Self-templated fabrication of micro/nano structured iron fluoride for high-performance lithium-ion batteries[J]. Journal of Power Sources, 2018, 396: 371-378. |
33 | Yuan S F, Jiang L, Yin C L, et al. A transfer function type of simplified electrochemical model with modified boundary conditions and Padé approximation for Li-ion battery(Part 1): Lithium concentration estimation[J]. Journal of Power Sources, 2017, 352: 245-257. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[3] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[4] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[5] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[6] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[7] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[8] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[9] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[10] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[11] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[12] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[13] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[14] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[15] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 564
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 341
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||