[1] |
KLEEMAN M J, SCHAUER J J, CASS G R. Size and composition distribution of fine particulate matter emitted from motor vehicles[J]. Environmental Science & Technology, 2000, 34(7):1132-1142.
|
[2] |
温昶, 徐明厚, 于敦喜, 等. 煤粉O2/CO2燃烧时PM2.5及其Fe, S的生成特性[J]. 化工学报, 2011, 62(4):1062-1069. WEN C, XU M H, YU D X, et al. Formation characteristics of PM2.5 including Fe, S during O2/CO2 combustion of pulverized coal[J]. CIESC Journal, 2011, 62(4):1062-1069.
|
[3] |
ZHANG Q, QUAN J N, TIE X X, et al. Effects of meteorology and secondary particle formation on visibility during heavy haze events in Beijing, China[J]. Science of the Total Environment, 2015, 502:578-584.
|
[4] |
尹文君, 张大伟, 严京海, 等. 基于深度学习的大数据空气污染预报[J]. 中国环境管理, 2015, (6):46-52. YIN W J, ZHANG D W, YAN J H, et al. Deep learning based air pollutant forecasting with big data[J]. Chinese Journal of Environmental Management, 2015, (6):46-52.
|
[5] |
MA Z W, HU X F, HUANG L, et al. Estimating ground-level PM2.5 in China using satellite remote sensing[J]. Environmental Science & Technology, 2014, 48(13):7436-7444.
|
[6] |
HU J, ZHANG H, CHEN S H, et al. Predicting primary PM2.5 and PM0.1 trace composition for epidemiological studies in California[J]. Environmental Science & Technology, 2014, 48(9):4971-4979.
|
[7] |
MAKAR P A, GONG W, MILBRANDT J, et al. Feedbacks between air pollution and weather (Ⅰ):Effects on weather[J]. Atmospheric Environment, 2015, 115:442-469.
|
[8] |
MAKAR P, GONG W, HOGREFE C, et al. Feedbacks between air pollution and weather(Ⅱ):Effects on chemistry[J]. Atmospheric Environment, 2015, 115:499-526.
|
[9] |
COBOURN W G. An enhanced PM2.5 air quality forecast model based on nonlinear regression and back-trajectory concentrations[J]. Atmospheric Environment, 2010, 44(25):3015-3023.
|
[10] |
SUN W, ZHANG H, PALAZOGLU A, et al. Prediction of 24-hour-average PM2.5 concentrations using a hidden Markov model with different emission distributions in Northern California[J]. Science of the Total Environment, 2013, 443:93-103.
|
[11] |
ZHANG H, ZHANG W D, PALAZOGLU A, et al. Prediction of ozone levels using a hidden Markov model (HMM) with gamma distribution[J]. Atmospheric Environment, 2012, 62:64-73.
|
[12] |
ZHOU G Q, XU J M, XIE Y, et al. Numerical air quality forecasting over eastern China:an operational application of WRF-Chem[J]. Atmospheric Environment, 2017, 153:94-108.
|
[13] |
REISEN V A, SARNAGLIA A J Q, REIS JR N C, et al. Modeling and forecasting daily average PM10 concentrations by a seasonal long-memory model with volatility[J]. Environmental Modelling & Software, 2014, 51:286-295.
|
[14] |
苏文, 赵力, 邓帅. 基于基团拓扑的遗传神经网络工质临界温度预测[J]. 化工学报, 2016, 67(11):4689-4695. SU W, ZHAO L, DENG S. Prediction of refrigerant critical temperature with genetic neural network based on group topology[J]. CIESC Journal, 2016, 67(11):4689-4695.
|
[15] |
黄凯, 陈勇, 母志为, 等. 基于人工神经网络和遗传算法的甲烷制氢催化剂设计[J]. 化工学报, 2016, 67(8):3481-3490. HUANG K, CHEN Y, MU Z W, et al. Catalyst design for production of hydrogen from methane based on artificial neural network and genetic algorithm[J]. CIESC Journal, 2016, 67(8):3481-3490.
|
[16] |
SUN W, ZHANG H, PALAZOGLU A. Prediction of 8 h-average ozone concentration using a supervised hidden Markov model combined with generalized linear models[J]. Atmospheric Environment, 2013, 81:199-208.
|
[17] |
ROPERO R, AGUILERA P, FERNáNDEZ A, et al. Regression using hybrid Bayesian networks:modelling landscape-socioeconomy relationships[J]. Environmental Modelling & Software, 2014, 57:127-137.
|
[18] |
LÜ B L, COBOURN W G, BAI Y Q. Development of nonlinear empirical models to forecast daily PM2.5 and ozone levels in three large Chinese cities[J]. Atmospheric Environment, 2016, 147:209-223.
|
[19] |
RABINER L R. A tutorial on hidden Markov models and selected applications in speech recognition[J]. Proceedings of the IEEE, 1989, 77(2):257-286.
|
[20] |
DEBYECHE M, HATON J P, HOUACINE A. A new vector quantization approach for discrete HMM speech recognition system[J]. International Journal of Computing, 2014, 5(1):72-78.
|
[21] |
DIAS J G, VERMUNT J K, RAMOS S. Clustering financial time series:new insights from an extended hidden Markov model[J]. European Journal of Operational Research, 2015, 243(3):852-864.
|
[22] |
KROGH A, LARSSON B, VON HEIJNE G, et al. Predicting transmembrane protein topology with a hidden Markov model:application to complete genomes[J]. Journal of Molecular Biology, 2001, 305(3):567-580.
|
[23] |
YAMATO J, OHYA J, ISHⅡ K. Recognizing human action in time-sequential images using hidden markov model[C]//Proceedings of the Computer Vision and Pattern Recognition, 1992 IEEE Computer Society Conference on, 1992.
|
[24] |
DONG M, YANG D, KUANG Y, et al. PM2.5 concentration prediction using hidden semi-Markov model-based times series data mining[J]. Expert Systems with Applications, 2009, 36(5):9046-9055.
|
[25] |
ZHANG H, PALAZOGLU A, ZHANG X, et al. Prediction of surface ozone exceedance days using PCA with a non-parametric T2 control limit[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 133:42-48.
|
[26] |
SUN W, PALAZOGLU A, SINGH A, et al. Prediction of surface ozone episodes using clusters based generalized linear mixed effects models in Houston-Galveston-Brazoria area, Texas.[J]. Atmospheric Pollution Research, 2015, 6(2):245-253.
|
[27] |
PFUNDSTEIN G. Hidden Markov models with generalised emission distribution for the analysis of high-dimensional, non-euclidean data[D]. Munich:Institut für Statistik, 2011.
|
[28] |
SCHNEIDER T. Analysis of incomplete climate data:estimation of mean values and covariance matrices and imputation of missing values[J]. Journal of Climate, 2001, 14(5):853-871.
|
[29] |
WANG Y L, BARBACIORU C, HYLAND F, et al. Large scale real-time PCR validation on gene expression measurements from two commercial long-oligonucleotide microarrays[J]. BMC Genomics, 2006, 7(1):59.
|
[30] |
DUTOT A-L, RYNKIEWICZ J, STEINER F E, et al. A 24-h forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions[J]. Environmental Modelling & Software, 2007, 22(9):1261-1269.
|