[1] |
WIECKHUSEN D, BECKMANN W. Crystallization:Basic Concepts and Industrial Applications[M]. Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA, 2013:1-7.
|
[2] |
龚俊波, 陈明洋, 黄翠, 等. 面向清洁生产的制药结晶[J]. 化工学报, 2015, 66(9):3271-3278. GONG J B, CHEN M Y, HUANG C, et al. Clean production of pharmaceutical crystallization[J]. CIESC Journal, 2015, 66(9):3271-3278.
|
[3] |
ROHANI S, HORNE S, MURTHY K. Control of product quality in batch crystallization of pharmaceuticals and fine chemicals(Ⅰ):Design of the crystallization process and the effect of solvent[J]. Organic Process Research & Development, 2005, 9(6):58-872.
|
[4] |
LOVETTE M A, BROWNING A R, GRIFFIN D W. Crystal shape engineering[J]. Industrial & Engineering Chemistry Research, 2008, 47(24):9812-9833.
|
[5] |
ACEVEDO D, TANDY Y, NAGY Z K. Multiobjective optimization of an unseeded batch cooling crystallizer for shape and size manipulation[J]. Industrial & Engineering Chemistry Research, 2015, 54(7):2156-2166.
|
[6] |
EISENSCHMIDT H, BAJCINCA N, SUNDMACHER K. Optimal control of crystal shapes in batch crystallization experiments by growth-dissolution cycles[J]. Crystal Growth & Design, 2016, 6(6):3297-3306.
|
[7] |
YU L X, LIONBERGER R A, RAW A S, et al. Applications of process analytical technology to crystallization processes[J]. Advanced Drug Delivery Reviews, 2004, 56 (3):349-369.
|
[8] |
RATHORE A S, BHAMBURE R, GHARE V. Process analytical technology (PAT) for biopharmaceutical products[J]. Analytical & Bioanalytical Chemistry, 2010, 398(1):137-154.
|
[9] |
BORDAWEKAR S. Industry perspectives on process analytical technology:tools and applications in API manufacturing[J]. Organic Process Research & Development, 2015, 19(9):1174-1185.
|
[10] |
SIMON L L. Assessment of recent process analytical technology (PAT) trends:a multiauthor review[J]. Organic Process Research & Development, 2015, 19(1):3-62.
|
[11] |
BOONKHAO B. On-line characterisation techniques for manufacture of nanomaterials[D]. London:University of Leeds, 2011.
|
[12] |
MOORE J, CERASOLI E. Particle Light Scattering Methods and Applications[M]//Encyclopedia of Spectroscopy and Spectrometry. 2nd ed. Oxford:Academic Press, 2010:2077-2088.
|
[13] |
PENCHEV R Y. Monitoring and controlling crystal size during industrial batch crystallization processes via the use of ATR-FTIR and acoustic attenuation spectroscopy techniques[D]. London:University of Leeds, 2007.
|
[14] |
BUTT H J, CAPPELLA B, KAPPL M. Force measurements with the atomic force microscope:technique, interpretation and applications[J]. Surface Science Reports, 2005, 59(1):1-152.
|
[15] |
FORRESTER D M, HUANG J, PINFIELD V J. Characterize of colloidal dispersions using ultrasound spectroscopy and multiple-scattering theory inclusive of shear-wave effects[J]. Chemical Engineering Research & Design, 2016, 114(1):69-78.
|
[16] |
HÜBSCHEN G. Ultrasonic techniques for materials characterization[M]//Materials Characterization Using Nondestructive Evaluation (NDE) Methods. Woodhead Publishing, 2016:177-224.
|
[17] |
GUEDRA M, BRASIER V T, CONOIR J M. Influence of shell compressibility on the ultrasonic properties of polydispersedsuspensions of nanometric encapsulated droplets[J]. Journal of the Acoustical Society of America, 2014, 135(3):1044-1055.
|
[18] |
侯怀书, 苏明旭, 蔡小舒. 超细颗粒悬浊液超声衰减谱与声速谱测量研究[J]. 仪器仪表学报, 2010, 31(2):241-247. HOU H S, SU M X, CAI X S. Study on measurement of ultrasonic attenuation and velocity spectra in superfine particle suspensions[J]. Chinese Journal of Scientific Instrument, 2010, 31(2):241-247.
|
[19] |
RICHTER A, VOIGT T, RIPPERGER S. Ultrasonic attenuation spectroscopy of emulsions with droplet sizes greater than 10μm[J]. Journal of Colloid and Interface Science, 2007, 315(2):482-492.
|
[20] |
ZHANG Y, LIU J J, ZHANG L, et al. Particle shape characterisation and classification using automated microscopy and shape descriptors in batch manufacture of particulate solids[J]. Particuology, 2016, 24(1):61-68.
|
[21] |
ZHANG R, MA C H, LIU J J, et al. On-line measurement of the real size and shape of crystals in stirred tank crystalliser using non-invasive stereo vision imaging[J]. Chemical Engineering Science, 2015, 137(1):9-12.
|
[22] |
CALDERON D J, WANG X Z, LAI X, et al. Real-time product morphology monitoring in crystallization using imaging technique[J]. AIChE Journal, 2005, 51(5):1406-1414.
|
[23] |
LARSEN P A, RAWLINGS J B, FERRIER N J. Model-based object recognition to measure crystal size and shape distributions from in situ video images[J]. Chemical Engineering Science, 2007, 62(5):1430-1441.
|
[24] |
BRITTAIN H G. What is the "correct" method to use for particle-size determination[J]. Pharmaceutical Technology, 2001, 25(1):96-98.
|
[25] |
SPELT P M, NORATO M A, SANGANI A S, et al. Determination of particle size distributions from acoustic wave propagation measurements[J]. Physics of Fluids, 1999, 11(5):1065-1080.
|
[26] |
DUKHIN A S, GOETZ P J. Ultrasound for Characterizing Colloids:Particle Sizing, Zeta Potential, Rheology[M]. Mount Kisco:Dispersion Technology Inc., 2002:119-169.
|
[27] |
SHUKLA A, PRAKASH A, ROHANI S. Particle size monitoring in dense suspension using ultrasound with an improved model accounting for low-angle scattering[J]. AIChE Journal, 2010, 56(11):2825-2837.
|
[28] |
陈慧萍, 张国荣, 骆亚涛, 等. 阿司匹林-乙醇的结晶热力学研究[J].化学工程, 2015, 43(10):35-38. CHEN H P, ZHANG G R, LUO Y T, et al. Crystallization thermodynamics of Aspirin in ethanol[J]. Chemical Engineering(China), 2015, 43(10):35-38.
|
[29] |
张海涛, 邓惠尹, 王静康, 等. 头孢噻肟钠在水-异丙醇中的液固平衡测量与关联[J]. 天津大学学报, 2007, 40(3):289-293. ZHANG H T, DENG H Y, WANG J K, et al. Measurement and correlation of liquid-solid equilibrium of Cefotaxime sodium in water-isopropanol[J]. Journal of Tianjin University, 2007, 40(3):289-293.
|
[30] |
孟庆芬, 董亚萍, 李武. 硼酸水溶液介稳区性质的研究[J]. 无机盐工业, 2007, 39(1):25-27. MENG Q F, DONG Y P, LI W. A study on the property of boric acid aqueous solution in metastable zone[J]. Inorganic Chemicals Industry, 2007, 39(1):25-27.
|
[31] |
付贵珍. 两种晶体成核理论研究概述[J]. 山东陶瓷, 2013, 36(3):18-22. FU G Z. Research description of two kinds of nucleation of crystals theories[J]. Shandong Ceramics, 2013, 36(3):18-22.
|