[1] |
LIN B, HUANG Y. Index decomposition of greenhouse gas emissions and prospect of electricity demand in China, Russia and India[J]. Sustainable Development, 2017, 7(1):59-69.
|
[2] |
金涌, 周禹成, 胡山鹰. 低碳理念指导的煤化工产业发展探讨[J]. 化工学报, 2012, 63(1):3-8. JIN Y, ZHOU Y C, HU S Y. Discussion on development of coal chemical industry using low-carbon concept[J]. CIESC Journal, 2012, 63(1):3-8.
|
[3] |
KANG D, LEE M G, JO H, et al. Carbon capture and utilization using industrial wastewater under ambient conditions[J]. Chemical Engineering Journal, 2017, 308:1073-1080.
|
[4] |
巩金龙. CO2化学转化研究进展概述[J]. 化工学报, 2017, 68(4):1282-1285. GONG J L. A brief overview on recent progress on chemical conversion of CO2[J]. CIESC Journal, 2017, 68(4):1282-1285.
|
[5] |
PRIETO G. Carbon dioxide hydrogenation into higher hydrocarbons and oxygenates:thermodynamic and kinetic bounds and progress with heterogeneous and homogeneous catalysis[J]. ChemSusChem, 2017, 10(6):1056-1070.
|
[6] |
MA H F, YING W Y, FANG D Y. Study on methanol synthesis from coal-based syngas[J].J. Coal Sci. Eng.(China), 2009, 15(1):98-103.
|
[7] |
GNANAMANI M K, JACOBS G, HUSSEIN H, et al. Hydrogenation of carbon dioxide over Co-Fe bimetallic catalysts[J].ACS Catal., 2016, 6(2):913-927.
|
[8] |
PRASAD P S S, BAE J W, JUN K W, et al. Fischer-Tropsch synthesis by carbon dioxide hydrogenation on Fe-based catalysts[J]. Catal. Surv. Asia, 2008, 12:170-183.
|
[9] |
PIEDEL T, SCHULZ H, SCHAUB G, et al. Fischer-Tropsch on iron with H2/CO and H2/CO2 as synthesis gases:the episodes of formation of the Fischer-Tropsch regime and construction of the catalysts[J]. Topics in Catalysis, 2003, 26(1/2/3/4):41-54.
|
[10] |
DUBOIS J L, ARAKAWA H, SAYAMA K. CO2 hydrogenation over carbide catalysts[J]. Chemistry Letters, 1992, 125(1):5-8.
|
[11] |
FUJIWARA M, KIEFFER R, ANDO H, et al. Development of composite catalysts made of Cu-Zn-Cr oxide/zeolite for the hydrogenation of carbon dioxide[J]. Applied Catalysis A:General, 1995, 121(1):113-124.
|
[12] |
CLARKE D B, BELL A T. An infrared study of methanol synthesis from CO2 on clean and potassium-promoted Cu/SiO2[J]. Journal of Catalysis, 1995, 154(2):314-328.
|
[13] |
LEE M D, LEE J F, CHANG C S. Hydrogenation of carbon dioxide on unpromoted and potassium-promoted iron catalysts[J]. Bulletin of the Chemical Society of Japan, 1989, 62(8):2756-2758.
|
[14] |
KIM J S, LEE S, LEE S B, et al. Performance of catalytic reactors for the hydrogenation of CO2 to hydrocarbons[J]. Catalysis Today, 2006, 115(1):228-234.
|
[15] |
LANDAU M V, VIDRUK R, HERSKOWIT M. Sustainable production of green feed from carbon dioxide and hydrogen[J]. ChemSusChem, 2014, 7(3):785-794.
|
[16] |
WEI J, GE Q, YAO R, et al. Directly converting CO2 into a gasoline fuel[J]. Nature Communications, 2017, 8:15174.
|
[17] |
WEATHERBEE G D, RANKIN J L, BARTHOLOMEW C H. Activated adsorption of H2 on iron:effects of support, potassium promoter, and pretreatment[J]. Applied Catalysis, 1984, 11(1):73-84.
|
[18] |
DUBOIS J L, ARAKAWA H, SAYAMA K. CO2 hydrogenation over carbide catalysts[J]. Chemistry Letters, 1992, 125(1):5-8.
|
[19] |
OZBEK M O, NIEMANTSVERDRIET J W H. Methane, formaldehyde and methanol formation pathways from carbon monoxide and hydrogen on the (001) surface of the iron carbide[J]. Journal of Catalysis, 2015, 325:9-18.
|
[20] |
张俊, 张征湃, 苏俊杰, 等. 载体碱性对铁基催化剂费托合成反应的影响[J]. 化工学报, 2016, 27(2):549-556. ZHANG J, ZHANG Z P, SU J J, et al. Effect of support basicity on iron based catalysts for Fischer-Tropsch synthesis[J]. CIESC Journal, 2016, 27(2):549-556.
|
[21] |
FU D L, DAI W W, ZHANG Z P, et al. Probing the structure evolution of iron-based Fischer-Tropsch to produce olefins by operando Raman spectroscopy[J]. ChemCatChem, 2015, 7:752-756.
|
[22] |
ZHANG Y L, FU D L, XU X Y, et al. Application of operando spectroscopy on catalytic reactions[J]. Current Opinion in Chemical Engineering, 2016, 12:1-7.
|
[23] |
HEMINGTON E F G. The Fischer-Tropsch synthesis considered as a polymerization reaction[J]. Chemistry & Industry, 1946, 65(1):346-347.
|
[24] |
ANDERSON R B, FRIEDEL R A, STORCH H H. Fischer-Tropsch reaction mechanism involving stepwise growth of carbon chain[J]. The Journal of Chemical Physics, 1951, 19(3):313-319.
|
[25] |
MUNTEANU G, ILLEVA L, ANDREEVA D. Kinetic parameters obtained from TPR data for α-Fe2O3 and Au α-Fe2O3 systems[J]. Thermochemical Acta, 1997, 291(1):171-177.
|
[26] |
TUINSTRA F, KOENIG J L. Raman spectrum of graphite[J]. Journal of Chemical Physics, 1970, 53(3):1126-1130.
|
[27] |
LU J, YANG L, XU B, et al. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins[J]. ACS Catalysis, 2014, 4(2):613-621.
|
[28] |
邵光印, 张玉龙, 张征湃, 等. 不同硅铝比ZSM-5负载铁基催化剂二氧化碳加氢性能[J]. 化工学报, 2017, 68(2):671-678. SHAO G Y, ZHANG Y L, ZHANG Z P, et al. CO2 hydrogenation over Fe catalysts supported on ZSM-5 zeolite with different ratios of Si/Al[J]. CIESC Journal, 2017, 68(2):671-678.
|
[29] |
XU J, BARTHOLOMEW C H. Temperature-programmed hydrogenation (TPH) and in situ Mössbauer spectroscopy studies of carbonaceous species on silica-supported iron Fischer-Tropsch catalysts[J]. Journal of Physical Chemistry B, 2005, 109(6):2392-2403.
|
[30] |
GRACIA J M, PRINSLOO F F, NIEMANTSVERDRIET J W. Mars-van Krevelen-like mechanism of CO hydrogenation on an iron carbide surface[J]. Catalysis Letters, 2009, 133(3/4):257-261.
|
[31] |
ORDOMSKY V V, LEGRAS B, CHENG K, et al. The role of carbon atoms of supported iron carbides in Fischer-Tropsch synthesis[J]. Catalysis Science & Technology, 2015, 5(3):1433-1437.
|
[32] |
SLOTA P J, JULL A J T, LINICK T W, et al. Preparation of small samples for 14C accelerator targets by catalytic reduction of CO[J]. Radiocarbon, 1987, 29(2):303-306.
|