CIESC Journal ›› 2021, Vol. 72 ›› Issue (4): 1815-1824.DOI: 10.11949/0438-1157.20201127
• Reviews and monographs • Previous Articles Next Articles
Received:
2020-08-10
Revised:
2020-11-11
Online:
2021-04-05
Published:
2021-04-05
Contact:
YU Fengshou
通讯作者:
于丰收
作者简介:
于丰收(1987—),男,博士,副教授,基金资助:
CLC Number:
YU Fengshou, ZHANG Luhua. Structure-performance relationship of Cu-based nanocatalyst for electrochemical CO2 reduction[J]. CIESC Journal, 2021, 72(4): 1815-1824.
于丰收, 张鲁华. Cu基纳米材料电催化还原CO2的结构-性能关系[J]. 化工学报, 2021, 72(4): 1815-1824.
Add to citation manager EndNote|Ris|BibTeX
Fig.2 Crystal orientation maps constructed for the various types of Cu nanowires (a); Distribution of the different types of grain boundaries (b); The correlations between JCO and the relative densities of high-angle grain (c) and coherent (Σ3) boundaries (d) for HR-150 nanowires
Fig.3 HRTEM images of ED-Cu catalysts (a) and GB-Cu catalysts (b); Cu 2p XPS spectra of as-prepared Cu catalysts (c); Faradaic efficiencies of gas products on ED-Cu (d) and GB-Cu (e) as a function of the electrode potential; Comparison of Faradaic efficiencies of C2 products on electrodes (f); In situ ATR-SEIRAS spectras of GB-Cu (g); Different binding sites on the schemed atomic structure of GB-Cu (h); *CO energies in different sites of the schemed structure of GB-Cu (i)
Fig.4 Schematic diagram for the preparation of 100-cycle Cu(a); SEM images of the polished Cu foil(b) and 100-cycle Cu(c); SAED pattern and TEM image(d) of the Cu nanotube; The lattice spacing of Cu nanotubes(e); Faradaic efficiencies(f) and partial currents(g) of C2+, C1 and H2 on 100-cycle Cu; The highest C2+/C1 ratio of Cu foil, 10-cycle Cu, 100-cycle Cu(h)
1 | Lewis N S, Nocera D G. Powering the planet: chemical challenges in solar energy utilization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(43): 15729-15735. |
2 | Ross M B, de Luna P, Li Y F, et al. Designing materials for electrochemical carbon dioxide recycling[J]. Nature Catalysis, 2019, 2(8): 648-658. |
3 | Lu Q, Jiao F. Electrochemical CO2 reduction: electrocatalyst, reaction mechanism, and process engineering[J]. Nano Energy, 2016, 29: 439-456. |
4 | Bushuyev O S, de Luna P, Dinh C T, et al. What should we make with CO2 and how can we make it?[J]. Joule, 2018, 2(5): 825-832. |
5 | Wang W, Wang S P, Ma X B, et al. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chemical Society Reviews, 2011, 40(7): 3703-3727. |
6 | Barber J. Photosynthetic energy conversion: natural and artificial[J]. Chemical Society Reviews, 2009, 38(1): 185-196. |
7 | Cook T R, Dogutan D K, Reece S Y, et al. Solar energy supply and storage for the legacy and nonlegacy worlds[J]. Chemical Reviews, 2010, 110(11): 6474-6502. |
8 | Zhang L H, Shi Y M, Wang Y, et al. Nanocarbon catalysts: recent understanding regarding the active sites[J]. Advanced Science, 2020, 7(5): 1902126. |
9 | Messinger J, Ishitani O, Wang D W. Artificial photosynthesis - from sunlight to fuels and valuable products for a sustainable future[J]. Sustainable Energy & Fuels, 2018, 2(9): 1891-1892. |
10 | He J, Janáky C. Recent advances in solar-driven carbon dioxide conversion: expectations versus reality[J]. ACS Energy Letters, 2020, 5(6): 1996-2014. |
11 | Birdja Y Y, Pérez-Gallent E, Figueiredo M C, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels[J]. Nature Energy, 2019, 4(9): 732-745. |
12 | Nitopi S, Bertheussen E, Scott S B, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte[J]. Chemical Reviews, 2019, 119(12): 7610-7672. |
13 | Hori Y, Kikuchi K, Suzuki S. Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution[J]. Chemistry Letters, 1985, 14(11): 1695-1698. |
14 | Raciti D, Wang C. Recent advances in CO2 reduction electrocatalysis on copper[J]. ACS Energy Letters, 2018, 3(7): 1545-1556. |
15 | Ren D, Deng Y L, Handoko A D, et al. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper (Ⅰ) oxide catalysts[J]. ACS Catalysis, 2015, 5(5): 2814-2821. |
16 | Gattrell M, Gupta N, Co A. A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper[J]. Journal of Electroanalytical Chemistry, 2006, 594(1): 1-19. |
17 | Li J, Wang Z Y, McCallum C, et al. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction[J]. Nature Catalysis, 2019, 2(12): 1124-1131. |
18 | Peterson A A, Abild-Pedersen F, Studt F, et al. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels[J]. Energy & Environmental Science, 2010, 3(9): 1311-1315. |
19 | Peterson A A, Nørskov J K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts[J]. The Journal of Physical Chemistry Letters, 2012, 3(2): 251-258. |
20 | Nie X W, Esopi M R, Janik M J, et al. Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps[J]. Angewandte Chemie International Edition, 2013, 52(9): 2459-2462. |
21 | Hori Y, Murata A, Takahashi R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1989, 85(8): 2309. |
22 | Kuhl K P, Cave E R, Abram D N, et al. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces[J]. Energy & Environmental Science, 2012, 5(5): 7050. |
23 | Wang L M, Chen W L, Zhang D D, et al. Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms[J]. Chemical Society Reviews, 2019, 48(21): 5310-5349. |
24 | Tomboc G M, Choi S, Kwon T, et al. Potential link between Cu surface and selective CO2 electroreduction: perspective on future electrocatalyst designs[J]. Advanced Materials, 2020, 32(17): 1908398. |
25 | Dai L, Qin Q, Wang P, et al. Ultrastable atomic copper nanosheets for selective electrochemical reduction of carbon dioxide[J]. Science Advances, 2017, 3(9): e1701069. |
26 | Li C W, Kanan M W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films[J]. Journal of the American Chemical Society, 2012, 134(17): 7231-7234. |
27 | Li C W, Ciston J, Kanan M W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper[J]. Nature, 2014, 508(7497): 504-507. |
28 | Verdaguer-Casadevall A, Li C W, Johansson T P, et al. Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts[J]. Journal of the American Chemical Society, 2015, 137(31): 9808-9811. |
29 | Zhang H C, Li J, Cheng M J, et al. CO electroreduction: current development and understanding of Cu-based catalysts[J]. ACS Catalysis, 2019, 9(1): 49-65. |
30 | Raciti D, Cao L, Livi K J T, et al. Low-overpotential electroreduction of carbon monoxide using copper nanowires[J]. ACS Catalysis, 2017, 7(7): 4467-4472. |
31 | Xiao H, Goddard W A, Cheng T, et al. Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(26): 6685-6688. |
32 | Cao L, Raciti D, Li C Y, et al. Mechanistic insights for low-overpotential electroreduction of CO2 to CO on copper nanowires[J]. ACS Catalysis, 2017, 7(12): 8578-8587. |
33 | Raciti D, Livi K J, Wang C. Highly dense Cu nanowires for low-overpotential CO2 reduction[J]. Nano Letters, 2015, 15(10): 6829-6835. |
34 | Chen Z Q, Wang T, Liu B, et al. Grain-boundary-rich copper for efficient solar-driven electrochemical CO2 reduction to ethylene and ethanol[J]. Journal of the American Chemical Society, 2020, 142(15): 6878-6883. |
35 | Tan Z H, Peng T Y, Tan X J, et al. Controllable synthesis of leaf-like CuO nanosheets for selective CO2 electroreduction to ethylene[J]. ChemElectroChem, 2020, 7(9): 2020-2025. |
36 | Wang W H, Ning H, Yang Z X, et al. Interface-induced controllable synthesis of Cu2O nanocubes for electroreduction CO2 to C2H4[J]. Electrochimica Acta, 2019, 306: 360-365. |
37 | Ning H, Wang X S, Wang W H, et al. Cubic Cu2O on nitrogen-doped carbon shells for electrocatalytic CO2 reduction to C2H4[J]. Carbon, 2019, 146: 218-223. |
38 | Ning H, Mao Q H, Wang W H, et al. N-doped reduced graphene oxide supported Cu2O nanocubes as high active catalyst for CO2 electroreduction to C2H4[J]. Journal of Alloys and Compounds, 2019, 785: 7-12. |
39 | Bagger A, Ju W, Varela A S, et al. Electrochemical CO2 reduction: classifying Cu facets[J]. ACS Catalysis, 2019, 9(9): 7894-7899. |
40 | Wang Z N, Yang G, Zhang Z R, et al. Selectivity on etching: creation of high-energy facets on copper nanocrystals for CO2 electrochemical reduction[J]. ACS Nano, 2016, 10(4): 4559-4564. |
41 | Hori Y, Takahashi I, Koga O, et al. Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes[J]. Journal of Molecular Catalysis A: Chemical, 2003, 199(1/2): 39-47. |
42 | Schouten K J P, Kwon Y, van der Ham C J M, et al. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes[J]. Chemical Science, 2011, 2(10): 1902-1909. |
43 | Schouten K J P, Qin Z S, Pérez Gallent E, et al. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes[J]. Journal of the American Chemical Society, 2012, 134(24): 9864-9867. |
44 | Jiang K, Sandberg R B, Akey A J, et al. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction[J]. Nature Catalysis, 2018, 1(2): 111-119. |
45 | Loiudice A, Lobaccaro P, Kamali E A, et al. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction[J]. Angewandte Chemie International Edition, 2016, 55(19): 5789-5792. |
46 | Zhao Z L, Chen Z Z, Zhang X, et al. Generalized surface coordination number as an activity descriptor for CO2 reduction on Cu surfaces[J]. The Journal of Physical Chemistry C, 2016, 120(49): 28125-28130. |
47 | Li H J, Li Y D, Koper M T M, et al. Bond-making and breaking between carbon, nitrogen, and oxygen in electrocatalysis[J]. Journal of the American Chemical Society, 2014, 136(44): 15694-15701. |
48 | Li H Q, Xiao N, Wang Y W, et al. Promoting the electroreduction of CO2 with oxygen vacancies on a plasma-activated SnOx/carbon foam monolithic electrode[J]. Journal of Materials Chemistry A, 2020, 8(4): 1779-1786. |
49 | Lee S, Kim D, Lee J. Electrocatalytic production of C3-C4 compounds by conversion of CO2 on a chloride-induced Bi-phasic Cu2O-Cu catalyst[J]. Angewandte Chemie International Edition, 2015, 54(49): 14701-14705. |
50 | de Luna P, Quintero-Bermudez R, Dinh C T, et al. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction[J]. Nature Catalysis, 2018, 1(2): 103-110. |
51 | Mistry H, Varela A S, Bonifacio C S, et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene[J]. Nature Communications, 2016, 7: 12123. |
52 | Handoko A D, Chan K W, Yeo B S. CH3 mediated pathway for the electroreduction of CO2 to ethane and ethanol on thick oxide-derived copper catalysts at low overpotentials[J]. ACS Energy Letters, 2017, 2(9): 2103-2109. |
53 | Martić N, Reller C, MacAuley C, et al. Paramelaconite-enriched copper-based material as an efficient and robust catalyst for electrochemical carbon dioxide reduction[J]. Advanced Energy Materials, 2019, 9(29): 1901228. |
54 | Yang P P, Zhang X L, Gao F Y, et al. Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels[J]. Journal of the American Chemical Society, 2020, 142(13): 6400-6408. |
55 | Liu C, Lourenço M P, Hedström S, et al. Stability and effects of subsurface oxygen in oxide-derived Cu catalyst for CO2 reduction[J]. The Journal of Physical Chemistry C, 2017, 121(45): 25010-25017. |
56 | Eilert A, Cavalca F, Roberts F S, et al. Subsurface oxygen in oxide-derived copper electrocatalysts for carbon dioxide reduction[J]. The Journal of Physical Chemistry Letters, 2017, 8(1): 285-290. |
57 | Xin H, LaRue J, Öberg H, et al. Strong influence of coadsorbate interaction on CO desorption dynamics on Ru (0001) probed by ultrafast X-ray spectroscopy and ab initio simulations[J]. Physical Review Letters, 2015, 114(15): 156101. |
58 | Cavalca F, Ferragut R, Aghion S, et al. Nature and distribution of stable subsurface oxygen in copper electrodes during electrochemical CO2 reduction[J]. The Journal of Physical Chemistry C, 2017, 121(45): 25003-25009. |
59 | Garza A J, Bell A T, Head-Gordon M. Is subsurface oxygen necessary for the electrochemical reduction of CO2 on copper?[J]. The Journal of Physical Chemistry Letters, 2018, 9(3): 601-606. |
60 | Calle-Vallejo F, Koper M T M. Theoretical considerations on the electroreduction of CO to C2 species on Cu (100) electrodes[J]. Angewandte Chemie International Edition, 2013, 52(28): 7282-7285. |
61 | He Y H, Jiang W J, Zhang Y, et al. Pore-structure-directed CO2 electroreduction to formate on SnO2/C catalysts[J]. Journal of Materials Chemistry A, 2019, 7(31): 18428-18433. |
62 | Yang K D, Ko W R, Lee J H, et al. Morphology-directed selective production of ethylene or ethane from CO2 on a Cu mesopore electrode[J]. Angewandte Chemie International Edition, 2017, 56(3): 796-800. |
63 | Zhuang T T, Pang Y J, Liang Z Q, et al. Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide[J]. Nature Catalysis, 2018, 1(12): 946-951. |
64 | Li F, Gu G H, Choi C, et al. Highly stable two-dimensional bismuth metal-organic frameworks for efficient electrochemical reduction of CO2[J]. Applied Catalysis B: Environmental, 2020, 277: 119241. |
65 | Kas R, Kortlever R, Yılmaz H, et al. Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions[J]. ChemElectroChem, 2015, 2(3): 354-358. |
66 | Varela A S, Kroschel M, Reier T, et al. Controlling the selectivity of CO2 electroreduction on copper: the effect of the electrolyte concentration and the importance of the local pH[J]. Catalysis Today, 2016, 260: 8-13. |
67 | Xiao H, Cheng T, Goddard W A, et al. Mechanistic explanation of the pH dependence and onset potentials for hydrocarbon products from electrochemical reduction of CO on Cu (111)[J]. Journal of the American Chemical Society, 2016, 138(2): 483-486. |
68 | Wakerley D, Lamaison S, Ozanam F, et al. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface[J]. Nature Materials, 2019, 18(11): 1222-1227. |
69 | Raciti D, Mao M, Park J H, et al. Mass transfer effects in CO2 reduction on Cu nanowire electrocatalysts[J]. Catalysis Science & Technology, 2018, 8(9): 2364-2369. |
70 | Endrődi B, Bencsik G, Darvas F, et al. Continuous-flow electroreduction of carbon dioxide[J]. Progress in Energy and Combustion Science, 2017, 62: 133-154. |
71 | Luc W, Fu X B, Shi J J, et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate[J]. Nature Catalysis, 2019, 2(5): 423-430. |
72 | Singh M R, Kwon Y, Lum Y, et al. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu[J]. Journal of the American Chemical Society, 2016, 138(39): 13006-13012. |
73 | Gupta N, Gattrell M, MacDougall B. Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions[J]. Journal of Applied Electrochemistry, 2006, 36(2): 161-172. |
74 | Schouten K J P, Pérez Gallent E, Koper M T M. The influence of pH on the reduction of CO and CO2 to hydrocarbons on copper electrodes[J]. Journal of Electroanalytical Chemistry, 2014, 716: 53-57. |
[1] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[2] | Runmiao GAO, Mengjie SONG, Enyuan GAO, Long ZHANG, Xuan ZHANG, Keke SHAO, Zekang ZHEN, Zhengyong JIANG. Review on greenhouse gas reduction related to refrigerants in cold chain [J]. CIESC Journal, 2023, 74(S1): 1-7. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | Xiaoxiong FAN, Lifang HAO, Chuigang FAN, Songgeng LI. Study on the catalytic denitrification performance of low-temperature NH3-SCR over LaMnO3/biochar catalyst [J]. CIESC Journal, 2023, 74(9): 3821-3830. |
[5] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[6] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[7] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[8] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[9] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[10] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[11] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[12] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[13] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[14] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[15] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||