CIESC Journal ›› 2018, Vol. 69 ›› Issue (2): 699-708.DOI: 10.11949/j.issn.0438-1157.20170996
Previous Articles Next Articles
SHI Bianfang, ZHA Binbin, ZHANG Jun, ZHANG Zhengpai, XU Jing, HAN Yifan
Received:
2017-07-30
Revised:
2017-12-12
Online:
2018-02-05
Published:
2018-02-05
Supported by:
supported by the National Natural Science Foundation of China (21406062, 21576084, 91534127).
石变芳, 查斌斌, 张俊, 张征湃, 徐晶, 韩一帆
通讯作者:
徐晶
基金资助:
国家自然科学基金项目(21406062,21576084,91534127)。
CLC Number:
SHI Bianfang, ZHA Binbin, ZHANG Jun, ZHANG Zhengpai, XU Jing, HAN Yifan. Iron-based catalyst on PANI-derived N-containing carbon carriers: effect of carrier carbonization temperature on direct syngas conversion to light olefins[J]. CIESC Journal, 2018, 69(2): 699-708.
石变芳, 查斌斌, 张俊, 张征湃, 徐晶, 韩一帆. 聚苯胺衍生碳材料负载的Fe基合成气直接制低碳烯烃催化剂:载体碳化温度的影响[J]. 化工学报, 2018, 69(2): 699-708.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20170996
[1] | SCHULZ H. Chemicals, feedstocks and fuels from Fischer-Tropsch and related syntheses[M]//Future Sources of Organic Raw Materials:CHEMRAWN I:CHEMRAWN Chemical Research Applied to Words Needs.2013:167. |
[2] | CORMA A, MELO F V, SAUVANAUD L, et al. Light cracked naphtha processing:controlling chemistry for maximum propylene production[J]. Catalysis Today, 2005, 107:699-706. |
[3] | ZHANG Z, DAI W, XU X C, et al. MnOx promotional effects on olefins synthesis directly from syngas over bimetallic Fe-MnOx/SiO2 catalysts[J]. AIChE Journal, 2017, 63(10):4451-4464. |
[4] | WANG S, ZHU Z H. Catalytic conversion of alkanes to olefins by carbon dioxide oxidative dehydrogenation:a review[J]. Energy & Fuels, 2004, 18(4):1126-1139. |
[5] | CHENG Y, LIN J, XU K, et al. Fischer-Tropsch synthesis to lower olefins over potassium-promoted reduced graphene oxide supported iron catalysts[J]. ACS Catalysis, 2016, 6(1):389-399. |
[6] | JIAO F, LI J, PAN X, et al. Selective conversion of syngas to light olefins[J].Science, 2016, 351(6277):1065-1068. |
[7] | CHENG K, GU B, LIU X, et al. Direct and highly selective conversion of synthesis gas to lower olefins:design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J].Angew. Chem. Int. Ed., 2016;55:4725-4728. |
[8] | AL-SAYARI S A. Catalytic conversion of syngas to olefins over Mn-Fe catalysts[J]. Ceramics International, 2014, 40(1):723-728. |
[9] | ZHAI P, XU C, GAO R, et al. Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst[J]. Angew. Chem., 2016, 128(34):10056-10061. |
[10] | ESCHEMANN T O, LAMME W S, MANCHESTER R L, et al. Effect of support surface treatment on the synthesis, structure, and performance of Co/CNT Fischer-Tropsch catalysts[J]. Journal of Catalysis, 2015, 328:130-138. |
[11] | SUN B, XU K, NGUYEN L, et al. Preparation and catalysis of carbon-supported iron catalysts for Fischer-Tropsch synthesis[J]. ChemCatChem, 2012, 4(10):1498-1511. |
[12] | CALDERONE V R, SHIJU N R, CURULLA-FERRÉ D, et al. De novo design of nanostructured iron-cobalt Fischer-Tropsch catalysts[J]. Angewandtte Chemie International Edition, 2013, 52(16):4397-4401. |
[13] | FU D, DAI W, XU X, et al. Probing the structure evolution of iron-based Fischer-Tropsch to produce olefins by operando Raman spectroscopy[J]. ChemCatChem, 2015, 7(5):752-756. |
[14] | SANTOS V P, WEZENDONK T A, JAÉN J J D, et al. Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts[J]. Nature Communications, 2015, 6:6451. |
[15] | CHENG Y, LIN J, WU T, et al. Mg and K dual-decorated Fe-on-reduced graphene oxide for selective catalyzing CO hydrogenation to light olefins with mitigated CO2 emission and enhanced activity[J]. Applied Catalysis B:Environmental, 2017, 204:475-485. |
[16] | GALVIS H M T, KOEKEN A C J, BITTER J H, et al. Effect of precursor on the catalytic performance of supported iron catalysts for the Fischer-Tropsch synthesis of lower olefins[J]. Catalysis Today, 2013, 215:95-102. |
[17] | AN B, CHENG K, WANG C, et al. Pyrolysis of metal-organic frameworks to Fe3O4@Fe5C2 core-shell nanoparticles for Fischer-Tropsch synthesis[J]. ACS Catalysis, 2016, 6(6):3610-3618. |
[18] | PARK J Y, LEE Y J, KHANNA P K, et al. Alumina-supported iron oxide nanoparticles as Fischer-Tropsch catalysts:effect of particle size of iron oxide[J]. Journal of Molecular Catalysis A:Chemical, 2010, 323(1):84-90. |
[19] | KOCK A, FORTUIN H M, GEUS J W. The reduction behavior of supported iron catalysts in hydrogen or carbon monoxide atmospheres[J]. Journal of Catalysis, 1985, 96(1):261-275. |
[20] | SUO H, WANG S, ZHANG C, et al. Chemical and structural effects of silica in iron-based Fischer-Tropsch synthesis catalysts[J]. Journal of Catalysis, 2012, 286:111-123. |
[21] | RAO K, HUGGINS F E, MAHAJAN V, et al. Mössbauer spectroscopy study of iron-based catalysts used in Fischer-Tropsch synthesis[J]. Topics in Catalysis, 1995, 2(1):71-78. |
[22] | TORRES G H M, BITTER J H, KHARE C B, et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335(6070):835-838. |
[23] | LU J Z, YANG L J, XU B L, et al. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins[J]. ACS Catalysis, 2014, 4(2):613-621. |
[24] | CHEN X Q, DENG D H, PAN X L, et al. N-doped graphene as an electron donor of iron catalysts for CO hydrogenation to light olefins[J]. Chemical Communication, 2015, 51:217-220. |
[25] | WU G, MORE K L, JOHNSTON C M, et al. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt[J]. Science, 2011, 332(6028):443-447. |
[26] | VARELA A S, RANJBAR SAHRAIE N, STEINBERG J, et al. Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons[J]. Angewandte Chemie International Edition, 2015, 54(37):10758-10762. |
[27] | SHI B, REN J, WANG A, et al. Synthesis and characterization of wormhole-like mesostructured polyaniline[J]. Journal of Materials Science, 2009, 44(24):6498. |
[28] | ORDOMSKY V V, LEGRAS B, CHENG K, et al. The role of carbon atoms of supported iron carbides in Fischer-Tropsch synthesis[J]. Catalysis Science & Technology, 2015, 5(3):1433-1437. |
[29] | MALARD L M, PIMENTA M A, DRESSELHAUS G, et al. Raman spectroscopy in graphene[J]. Physics Reports, 2009, 473(5/6):51-87. |
[30] | KNUTSEN K P, JOHNSON J C, MILLER A E, et al. High spectral resolution multiplex CARS spectroscopy using chirped pulses[J]. Chemical Physics Letters, 2004, 387(4):436-441. |
[31] | 谭平恒, 李峰, 成会明. 碳材料的拉曼光谱:从纳米管到金刚石[M]. 北京:化学工业出版社, 2007. TAN P H, LI F, CHENG H M. Raman Spectrum of Carbon Materials:from Nanotube to Diamond[M]. Beijing:Chemical Industry Press, 2007. |
[32] | BRUNA M, OTT A K, IJÄS M, et al. Doping dependence of the Raman spectrum of defected graphene[J]. ACS Nano, 2014, 8(7):7432-7441. |
[33] | DAS A, PISANA S, CHAKRABORTY B, et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor[J]. Nature Nanotechnology, 2008, 3(4):210-215. |
[34] | PENDYALA V R R, GRAHAM U M, JACOBS G, et al. Fischer-Tropsch synthesis:morphology, phase transformation, and carbon-layer growth of iron-based catalysts[J]. ChemCatChem, 2014, 6(7):1952-1960. |
[35] | KUNDU S, XIA W, BUSSER W, et al. The formation of nitrogen-containing functional groups on carbon nanotube surfaces:a quantitative XPS and TPD study[J]. Physical Chemistry Chemical Physics, 2010, 12(17):4351-4359. |
[36] | SÁNCHEZ M D, CHEN P, REINECKE T, et al. The role of oxygen-and nitrogen-containing surface groups on the sintering of iron nanoparticles on carbon nanotubes in different atmospheres[J]. ChemCatChem, 2012, 4(12):1997-2004. |
[37] | GOLCZAK S, KANCIURZEWSKA A, FAHLMAN M, et al. Comparative XPS surface study of polyaniline thin films[J]. Solid State Ionics, 2008, 179(39):2234-2239. |
[38] | SCHULTE H J, GRAF B, XIA W, et al. Nitrogen-and oxygen-functionalized multiwalled carbon nanotubes used as support in iron-catalyzed, high-temperature Fischer-Tropsch synthesis[J]. ChemCatChem, 2012, 4(3):350-355. |
[39] | LU J, YANG L, XU B, et al. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fscher-Topsch catalysts for lower olefins[J]. ACS Catalysis, 2014, 4(2):613-621. |
[40] | XIA W. Interactions between metal species and nitrogen-functionalized carbon nanotubes[J]. Catalysis Science & Technology, 2016, 6(3):630-644. |
[41] | LU J, YANG L, XU B, et al. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fscher-Topsch catalysts for lower olefins[J]. ACS Catalysis, 2014, 4(2):613-621. |
[42] | GROSVENOR A P, KOBE B A, BIESINGER M C, et al. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds[J]. Surface and Interface Analysis, 2004, 36(12):1564-1574. |
[43] | TORRES GALVIS H M, BITTER J H, DAVIDIAN T, et al. Iron particle size effects for direct production of lower olefins from synthesis gas[J]. Journal of the American Chemical Society, 2012, 134(39):16207-16215. |
[44] | XIE J, YANG J, DUGULAN A I, et al. Size and promoter effects in supported iron Fischer-Tropsch catalysts:insights from experiment and theory[J]. ACS Catalysis, 2016, 6:3147-3157. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[3] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[4] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[5] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[6] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[7] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
[8] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
[9] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[10] | Tianhao BAI, Xiaowen WANG, Mengzi YANG, Xinwei DUAN, Jie MI, Mengmeng WU. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite [J]. CIESC Journal, 2023, 74(4): 1772-1780. |
[11] | Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve [J]. CIESC Journal, 2023, 74(4): 1457-1473. |
[12] | Yin XU, Jie CAI, Lu CHEN, Yu PENG, Fuzhen LIU, Hui ZHANG. Advances in heterogeneous visible light photocatalysis coupled with persulfate activation for water pollution control [J]. CIESC Journal, 2023, 74(3): 995-1009. |
[13] | Runzhu LIU, Tiantian CHU, Xiaoa ZHANG, Chengzhong WANG, Junying ZHANG. Synthesis and properties of phenylene-containing α,ω-hydroxy-terminated fluorosilicone polymers [J]. CIESC Journal, 2023, 74(3): 1360-1369. |
[14] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[15] | Jieyuan ZHENG, Xianwei ZHANG, Jintao WAN, Hong FAN. Synthesis and curing kinetic analysis of eugenol-based siloxane epoxy resin [J]. CIESC Journal, 2023, 74(2): 924-932. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||