[1] |
XU S C, HE Z X, LONG R Y. Factors that influence carbon emissions due to energy consumption in China:decomposition analysis using LMDI[J]. Applied Energy, 2014, 127:182-193.
|
[2] |
ZHONG W Y, JOANNA D H. The greenhouse effect and carbon dioxide[J]. Weather, 2014, 69(68):100-105.
|
[3] |
GAO P, LI F, ZHAN H, et al. Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. Journal of Catalysis, 2013, 298:51-60.
|
[4] |
GNANAMANI M K, JACOBS G, HUSSEIN H, et al. Hydrogenation of carbon dioxide over Co-Fe bimetallic catalysts[J]. ACS Catal., 2016, 6(2):913-927.
|
[5] |
PRASAD P S S, BAE J W, JUN K W, et al. Fischer-Tropsch synthesis by carbon dioxide hydrogenation on Fe-based catalysts[J]. Catal. Surv. Asia, 2008, 12:170-183.
|
[6] |
PIEDEL T, SCHULZ H, SCHAUB G, et al. Fischer-Tropsch on iron with H2/CO and H2/CO2 as synthesis gases:the episodes of formation of the Fischer-Tropsch regime and construction of the catalysts[J]. Topics in Catalysis, 2003, 26(1/2/3/4):41-54.
|
[7] |
DUBOIS J L, ARAKAWA H, SAYAMA K. CO2 hydrogenation over carbide catalysts[J]. Chemistry Letters, 1992, 125(1):5-8.
|
[8] |
OZBEK M O, NIEMANTSVERDRIET J W H. Methane, formaldehyde and methanol formation pathways from carbon monoxide and hydrogen on the (001) surface of the iron carbide γ-Fe5C2[J]. Journal of Catalysis, 2015, 325:9-18.
|
[9] |
GALLEGOS N G, ALVAREZ A M, CAGNOLI M V, et al. Selectivity to olefins of Fe/SiO2-MgO catalysts in the Fischer-Tropsch reaction[J]. Journal of Catalysis, 1996, 161(1):132-142.
|
[10] |
PANDEY D, DEO G. Promotional effects in alumina and silica supported bimetallic Ni-Fe catalysts during CO2 hydrogenation[J]. Journal of Molecular Catalysis A:Chemical, 2014, 382:23-30.
|
[11] |
RIEDEL T, CLAEYS M, SCHULZ H, et al. Comparative study of Fischer-Tropsch synthesis with H2/CO and H2/CO2 syngas using Feand Co-based catalysts[J]. Applied Catalysis A:General, 1999, 186(1/2):201-213.
|
[12] |
MARTINEZ A, LOPEZ C. The influence of ZSM-5 zeolite composition and crystal size on the in situ conversion of Fischer-Tropsch products over hybrid catalysts[J]. Applied Catalysis A:General, 2005, 294(2):251-259.
|
[13] |
KANG S H, BAE J W, et al. Fischer-tropsch synthesis using zeolite-supported iron catalysts for the production of light hydrocarbons[J]. Catalysis Letter, 2008, 125:264-270.
|
[14] |
张俊, 张征湃, 苏俊杰, 等. 载体碱性对铁基催化剂费托合成反应的影响[J]. 化工学报, 2016, 67(2):549-556. ZHANG J, ZHANG Z P, SU J J, et al. Effect of support basicity on iron based catalysts for Fischer-Tropsch synthesis[J]. CIESC Journal, 2016, 67(2):549-556.
|
[15] |
TORRES GALVIS H M, BITTER J H, DAVIDIAN T, et al. Iron particle size effects for direct production of lower olefins from synthesis gas[J]. Journal of the American Chemical Society, 2012, 134(39):16207-16215.
|
[16] |
POUR A N, ZARE M, ZAMANI Y, et al. Catalytic behaviors of bifunctional Fe-HZSM-5 catalyst in Fischer-Tropsch synthesis[J]. Journal of Natural Gas Science and Engineering, 2009, 1(6):183-189.
|
[17] |
UNRAU C J, AXELBAUM R L, CYNTHIA S L. High-yield growth of carbon nanotubes on composite Fe/Si/O nanoparticle catalysts:a Car-Parrinello molecular dynamics and experimental study[J]. J. Phys. Chem. C, 2010, 114(23):10430-10435
|
[18] |
JIN Y, DATYE A K. Phase transformations in iron Fischer-Tropsch catalysts during temperature-programmed reduction[J]. Journal of Catalysis, 2000, 196(1):8-17.
|
[19] |
PARKA J Y, LEA Y J, JUN K W, et al. Alumina-supported iron oxide nanoparticles as Fischer-Tropsch catalysts:effect of particle size of iron oxide[J]. Journal of Molecular Catalysis A:Chemical, 2010, 323(1/2):84-90.
|
[20] |
FORSTER H, SCHUMANN M. Infrared spectroscopic studies on carbon dioxide adsorption in alkali-metal and alkaline-earth-metal ion-exchanged A-type zeolites[J]. J. Chem. Soc., Faraday Trans. Ⅰ, 1989, 85(5):1149-1158.
|
[21] |
LAVALLEY J C. Infrared spectrometric studies of the surface basicity of metal oxides and zeolites using adsorbed probe molecules[J]. Catalysis Today, 1996, 27(3/4):377-401.
|
[22] |
WEIGEL J, KOEPPEL R A, BAIKER A, et al. Surface species in CO and CO2 hydrogenation over copper/zirconia:on the methanol synthesis mechanism[J]. Langmuir, 1996, 12(22):5319-5329.
|
[23] |
SZANYI J, KWAK J H. Dissecting the steps of CO2 reduction(1):The interaction of CO and CO2 with γ-Al2O3:an in situ FTIR study[J]. Phys. Chem. Chem. Phys., 2014, 16:15123-15125.
|
[24] |
ZHANG X H, LIN L, ZHANG T, et al. Catalytic dehydration of lactic acid to acrylic acid over modified ZSM-5 catalysts[J]. Chemical Engineering Journal, 2016, 284:934-941.
|
[25] |
XU L Y, WANG Q X, LIANG D B, et al. The promotions of MnO and K2O to Fe/silicalite-2 catalyst for the production of light alkenes from CO2 hydrogenation[J]. Applied Catalysis A:General, 1998, 173(1):19-25.
|
[26] |
李静, 邓廷云, 杨林, 等. CO2吸附活化及催化加氢制低碳烯烃的研究进展[J]. 化工进展, 2013, 32(2):341-342. LI J, DENG T Y, YANG L, et al. Research progress of adsorption activation and catalytic hydrogenation of CO2[J]. Chemical Industry and Engineering Progress, 2013, 32(2):341-342.
|
[27] |
JACOBS P A, BELLMOOS R V. Framework hydroxyl groups of H-ZSM-5 zeolites[J]. J. Phys. Chem., 1982, 86(15):3050-3052.
|
[28] |
LU J, YANG L, XU B, et al. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins[J]. ACS Catalysis, 2014, 4(2):613-621.
|
[29] |
NAM M O S S, KISHAN G, LEE M W, et al. Selective synthesis of C2-C4 olefins and C5+ hydrocarbons over unpromoted and cerium-promoted iron catalysts supported on ion exchanged Y zeolite[J]. J. Chem. Research (S), 1999:344-345.
|
[30] |
RAVAGNAN L, SIVIERO F, LENARDI C, et al. Cluster-beam deposition and in situ characterization of carbyne-rich carbon films[J]. Physical Review Letters, 2002, 89(28):287-291.
|
[31] |
FU D L, DAI W W, ZHANG Z P, et al. Probing the structure evolution of iron-based Fischer-Tropsch to produce olefins by Operando Raman spectroscopy[J]. ChemCatChem, 2015, 7:752-756.
|
[32] |
BEHNER H, SPIESS W, WEDLER G, et al. Interaction of carbon dioxide with Fe(110), stepped Fe(100) and Fe(111)[J]. Surface Science, 1986, 175(2):276-286.
|