CIESC Journal ›› 2018, Vol. 69 ›› Issue (1): 175-187.DOI: 10.11949/j.issn.0438-1157.20171308
Previous Articles Next Articles
GENG Shujun1, HUANG Qingshan1,2, ZHU Quanhong1, JIN Yongcheng1, YANG Chao1,2
Received:
2017-09-27
Revised:
2017-11-20
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20171308
Supported by:
supported by the National Key Research and Development Program of China (2016YFB0301701), the National Natural Science Foundation of China (91434114, 21376254) and the Instrument Developing Project of the Chinese Academy of Sciences (YZ201641).
耿淑君1, 黄青山1,2, 朱全红1, 金永成1, 杨超1,2
通讯作者:
杨超
基金资助:
国家重点研发计划项目(2016YFB0301701);国家自然科学基金项目(91434114,21376254);中国科学院科研装备研制项目(YZ201641)。
CLC Number:
GENG Shujun, HUANG Qingshan, ZHU Quanhong, JIN Yongcheng, YANG Chao. Investigation on synthesis conditions of LiNi1-x-yCoxMnyO2 cathode material via co-precipitation[J]. CIESC Journal, 2018, 69(1): 175-187.
耿淑君, 黄青山, 朱全红, 金永成, 杨超. 共沉淀法制备LiNi1-x-yCoxMnyO2正极材料工艺条件探究[J]. 化工学报, 2018, 69(1): 175-187.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20171308
[1] | LIU J, ZHANG J G, YANG Z G, et al. Materials science and materials chemistry for large scale electrochemical energy storage:from transportation to electrical grid[J]. Advanced Functional Materials, 2013, 23(8):929-946. |
[2] | THACKERAY M M, WOLVERTON C, ISAACS E D. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries[J]. Energy & Environmental Science, 2012, 5(7):7854-7863. |
[3] | LIU J J, QIU W H, YU L Y, et al. Synthesis and electrochemical characterization of layered Li(Ni1/3Co1/3Mn1/3)O2 cathode materials by low-temperature solid-state reaction[J]. Journal of Alloys and Compounds, 2008, 449(1):326-330. |
[4] | REN H B, LI X, PENG Z H. Electrochemical properties of Li[Ni1/3Mn1/3Al1/3-xCox]O2 as a cathode material for lithium ion battery[J]. Electrochimica Acta, 2011, 56(20):7088-7091. |
[5] | JEON H J, MONIM S A, KANG C S, et al. Synthesis of Lix[Ni0.225Co0.125Mn0.65]O2 as a positive electrode for lithium-ion batteries by optimizing its synthesis conditions via a hydroxide co-precipitation method[J]. Journal of Physics and Chemistry of Solids, 2013, 74(9):1185-1195. |
[6] | LU Z H, MACNEIL D D, DAHN J R. Layered Li[NixCo(1-2x)Mnx]O2 cathode materials for lithium-ion batteries[J]. Electrochemical and Solid-State Letters, 2001, 4(12):A200-A203. |
[7] | MACNEIL D D, LU Z, DAHN J R. Structure and electrochemistry of Li[NixCo1-2xMnx]O2(0 ≤ x ≤ 1/2)[J]. Journal of the Electrochemical Society, 2002, 149(10):A1332-A1336. |
[8] | SUN Y C, OUYANG C Y, WANG Z X, et al. Effect of co content on rate performance of LiMn0.5-xCo2xNi0.5-xO2 cathode materials for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2004, 151(4):A504-A508. |
[9] | LIANG C P, LONGO R C, KONG F T, et al. Obstacles toward unity efficiency of LiNi1-2xCoxMnxO2(x=0-1/3) (NCM) cathode materials:insights from ab initio calculations[J]. Journal of Power Sources, 2017, 340:217-228. |
[10] | LIANG C P, KONG F T, LONGO R C, et al. Unraveling the origin of instability in Ni-Rich LiNi1-2xCoxMnxO2(NCM) cathode materials[J]. Journal of Physical Chemistry C, 2016, 120(12):6383-6393. |
[11] | LU Z H, MACNEIL D D, DAHN J R. Layered cathode materials Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 for lithium-ion batteries[J]. Electrochemical and Solid-State Letters, 2001, 7(12):A503-A506. |
[12] | KOBAYASHI H, ARACHI Y, EMURA S, et al. Investigation on lithium de-intercalation mechanism for Li1-yNi1/3Mn1/3Co1/3O2[J]. Journal of Power Sources, 2005, 146(1):640-644. |
[13] | SUN Y K, MYUNG S T, PARK B C, et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nature Materials, 2009, 8(4):320-324. |
[14] | LIM J H, BANG H, LEE K S, et al. Electrochemical characterization of Li2MnO3-Li[Ni1/3Co1/3Mn1/3]O2-LiNiO2 cathode synthesized via co-precipitation for lithium secondary batteries[J]. Journal of Power Sources, 2009, 189(1):571-575. |
[15] | GUO H J, LIANG R F, XIN-HAI L I, et al. Effect of calcination temperature on characteristics of LiNiCoMnO cathode for lithium ion batteries[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(6):1307-1311. |
[16] | PARK S H, OH S W, SUN Y K. Synthesis and structural characterization of layered Li[Ni1/3+xCo1/3Mn1/3-2xMox]O2 cathode materials by ultrasonic spray pyrolysis[J]. Journal of Power Sources, 2005, 146(1/2):622-625. |
[17] | ZHENG J M, WU X B, YANG Y. A comparison of preparation method on the electrochemical performance of cathode material Li[Li0.2Mn0.54Ni0.13Co0.13] O2 for lithium ion battery[J]. Electrochimica Acta, 2011, 56(8):3071-3078. |
[18] | NIELSEN A E. Kinetics of Precipitation[M]. New York:Pergamon Press, 1964. |
[19] | LEE M H, KANG Y J, MYUNG S T, et al. Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation[J]. Electrochimica Acta, 2004, 50(4):939-948. |
[20] | NOH M, CHO J. Optimized synthetic conditions of LiNi0.5Co0.2Mn0.3O2 cathode materials for high rate lithium batteries via co-precipitation method[J]. Journal of the Electrochemical Society, 2013, 160(1):A105-A111. |
[21] | CHO T H, PARK S M, YOSHIO M, et al. Effect of synthesis condition on the structural and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 prepared by carbonate co-precipitation method[J]. Journal of Power Sources, 2005, 142(1/2):306-312. |
[22] | CHO T H, SHIOSAKI Y, NOGUCHI H. Preparation and characterization of layered LiMn1/3Ni1/3Co1/3O2 as a cathode material by an oxalate co-precipitation method[J]. Journal of Power Sources, 2006, 159(2):1322-1327. |
[23] | YU H J, QIAN Y M, OTANI M, et al. Study of the lithium/nickel ions exchange in the layered LiNi0.42Mn0.42Co0.16O2 cathode material for lithium ion batteries:experimental and first-principles calculations[J]. Energy & Environmental Science, 2014, 7(3):1068-1078. |
[24] | KOYAMA Y, ARAI H, TANAKA I, et al. Defect chemistry in layered LiMO2(M=Co, Ni, Mn, and Li1/3Mn2/3) by first-principles calculations[J]. Chemistry of Materials, 2012, 24(20):3886-3894. |
[25] | AURBACH D. Electrode-solution interactions in Li-ion batteries:a short summary and new insights[J]. Journal of Power Sources, 2003, 119/120/121:497-503. |
[26] | GU Y J, CHEN Y B, LIU H Q, et al. Structural characterization of layered LiNi0.85-xMnxCo0.15O2 with x=0, 0.1, 0.2 and 0.4 oxide electrodes for Li batteries[J]. Journal of Alloys and Compounds, 2011, 509(30):7915-7921. |
[27] | JOUANNEAU S, EBERMAN K W, KRAUSE L J, et al. Synthesis, characterization, and electrochemical behavior of improved Li[NixCo(1-2x)Mnx]O2(0.1 ≤ x ≤ 0.5)[J]. Journal of the Electrochemical Society, 2003, 150(12):A1637-A1642. |
[28] | KIM J M, CHUNG H T. Role of transition metals in layered Li[Ni,Co,Mn]O2 under electrochemical operation[J]. Electrochimica Acta, 2004, 49(21):3573-3580. |
[29] | OHZUKU T, UEDA A, NAGAYAMA M, et al. Comparative study of LiCoO2, LiNiCoO2 and LiNiO2 for 4 volt secondary lithium cells[J]. Electrochimica Acta, 1993, 38(9):1159-1167. |
[30] | DAHN J R, VON SACKEN U, MICHAL C A. Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure[J]. Solid State Ionics, 1990, 44(1):87-97. |
[31] | LUO X F, WANG X Y, LIAO L, et al. Effects of synthesis conditions on the structural and electrochemical properties of layered Li[Ni1/3Co1/3Mn1/3]O2 cathode material via the hydroxide co-precipitation method LIB SCITECH[J]. Journal of Power Sources, 2006, 161(1):601-605. |
[32] | LIU W, OH P, LIU X, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries[J]. Angewandte Chemie, 2015, 54(15):4440-4457. |
[33] | SHAJU K M, RAO G V S, CHOWDARI B V R. Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries[J]. Electrochimica Acta, 2002, 48:145-151. |
[34] | KIM M H, SHIN H S, SHIN D, et al. Synthesis and electrochemical properties of Li[Ni0.8Co0.1Mn0.1]O2 and Li[Ni0.8Co0.2]O2 via co-precipitation[J]. Journal of Power Sources, 2006, 159(2):1328-1333. |
[35] | GU Y J, ZHANG Q G, CHEN Y B, et al. The thermodynamic analysis of Ni1/2Mn1/2(OH)2 prepared by hydroxide co-precipitation method[J]. Advanced Materials Research, 2013, 643:104-107. |
[36] | 顾琳, 王剑华, 郭玉忠, 等. 控制化学结晶法制备球形Ni(OH)2的热力学分析[J]. 南方金属, 2010, 173:10-14. GU L, WANG J H, GUO Y Z, et al. Thermodynamic analysis of the preparation of spherical Ni(OH)2 by controlled chemical crystallization[J]. Southern Metals, 2010, 173:10-14. |
[37] | 肖新颜, 叶永清. 共沉淀法合成Ni1/3Co1/3Mn1/3(OH)2的热力学分析[J]. 华南理工大学学报, 2010, 38(4):30-39. XIAO X Y, YE Y Q. Thermodynamic analysis of synthesis of Ni1/3Co1/3Mn1/3(OH)2 via co-precipitation[J]. Journal of South China University of Technology (Natural Science Edition), 2010, 38(4):30-39. |
[38] | SILLEN L G, MARTELL A E, BJERRUM J. Stability Constants of Metal-ion Complexes[M]. London, UK:the Chemical Society, 1971. |
[39] | YABUUCHI N, OHZUKU T. Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries[J]. Journal of Power Sources, 2003, 119/120/121:171-174. |
[40] | LUO X F, WANG X Y, LIAO L, et al. Synthesis and characterization of high tap-density layered Li[Ni1/3Co1/3Mn1/3]O2 cathode material via hydroxide co-precipitation[J]. Journal of Power Sources, 2006, 158(1):654-658. |
[41] | YOON J H, BANG H J, PRAKASH J, et al. Comparative study of Li[Ni1/3Co1/3Mn1/3]O2 cathode material synthesized via different synthetic routes for asymmetric electrochemical capacitor applications[J]. Materials Chemistry and Physics, 2008, 110(2/3):222-227. |
[42] | KONG J Z, ZHOU F, WANG C B, et al. Effects of Li source and calcination temperature on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 lithium-ion cathode materials[J]. Journal of Alloys and Compounds, 2013, 554:221-226. |
[43] | YUE P, WANG Z X, PENG W J, et al. Preparation and electrochemical properties of submicron LiNi0.6Co0.2Mn0.2O2 as cathode material for lithium ion batteries[J]. Scripta Materialia, 2011, 65(12):1077-1080. |
[44] | VU D L, LEE J W. Properties of LiNi0.8Co0.1Mn0.1O2 as a high energy cathode material for lithium-ion batteries[J]. Korean Journal of Chemical Engineering, 2015, 33(2):514-526. |
[45] | ZHENG X B, LI X H, ZHANG B, et al. Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode materials obtained by atomization co-precipitation method[J]. Ceramics International, 2016, 42(1):644-649. |
[46] | LIANG L W, DU K, PENG Z, et al. Co-precipitation synthesis of Ni0.6Co0.2Mn0.2(OH)2 precursor and characterization of LiNi0.6Co0.2Mn0.2O2 cathode material for secondary lithium batteries[J]. Electrochimica Acta, 2014, 130:82-89. |
[47] | DENG C, LIU L, ZHOU W, et al. Effect of synthesis condition on the structure and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 prepared by hydroxide co-precipitation method[J]. Electrochimica Acta, 2008, 53(5):2441-2447. |
[48] | LI D C, SASAKI Y, KAGEYAMA M, et al. Structure, morphology and electrochemical properties of LiNi0.5Mn0.5-xCoxO2 prepared by solid state reaction[J]. Journal of Power Sources, 2005, 148(2):85-89. |
[49] | CHO J. LiNi0.74Co0.26-xMgxO2 cathode material for a Li-ion cell[J]. Chemistry of Materials, 2014, 12(10):3089-3094. |
[50] | LIU H W, TAN L. High rate performance of novel cathode material Li1.33Ni1/3Co1/3Mn1/3O2 for lithium ion batteries[J]. Materials Chemistry and Physics, 2011, 129(3):729-732. |
[51] | HUA C S, DU K, TAN C P, et al. Study of full concentration-gradient Li(Ni0.8Co0.1Mn0.1)O2 cathode material for lithium ion batteries[J]. Journal of Alloys and Compounds, 2014, 614:264-270. |
[52] | HUANG Y, WANG Z X, LI X H, et al. Synthesis of Ni0.8Co0.1Mn0.1(OH)2 precursor and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium batteries[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(7):2253-2259. |
[53] | ZHANG S, DENG C, FU B L, et al. Synthetic optimization of spherical Li[Ni1/3Mn1/3Co1/3]O2 prepared by a carbonate co-precipitation method[J]. Powder Technology, 2010, 198(3):373-380. |
[54] | HU C Y, GUO J, DU Y, et al. Effects of synthesis conditions on layered Li[Ni1/3Co1/3Mn1/3]O2 positive-electrode via hydroxide co-precipitation method for lithium-ion batteries[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(1):114-120. |
[55] | ZHANG Y, CAO H, ZHANG J, et al. Synthesis of LiNi0.6Co0.2Mn0.2O2 cathode material by a carbonate co-precipitation method and its electrochemical characterization[J]. Solid State Ionics, 2006, 177(37/38):3303-3307. |
[56] | YIN K, FANG W, ZHONG B, et al. The effects of precipitant agent on structure and performance of LiNi1/3Co1/3Mn1/3O2 cathode material via a carbonate co-precipitation method[J]. Electrochimica Acta, 2012, 85:99-103. |
[57] | ZHANG C F, YANG P, DAI X, et al. Synthesis of LiNi1/3Co1/3Mn1/3O2 cathode material via oxalate precursor[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(3):635-641. |
[58] | LI L J, LI X H, WANG Z X, et al. A simple and effective method to synthesize layered LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion battery[J]. Powder Technology, 2011, 206(3):353-357. |
[59] | SHIN Y, CHOI W, HONG Y, et al. Investigation on the microscopic features of layered oxide Li[Ni1/3Co1/3Mn1/3]O2 and their influences on the cathode properties[J]. Solid State Ionics, 2006, 177(5/6):515-521. |
[60] | ZHONG S K, LI W, ZUO Z G, et al. Synthesis and electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode materials[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(6):1499-1503. |
[61] | LI L J, LI X H, WANG Z X, et al. Synthesis of LiNi0.8Co0.1Mn0.1O2 cathode material by chloride co-precipitation method[J]. Transactions of Nonferrous Metals Society of China, 2010, 20:279-282. |
[62] | XU Y H, FENG Q, KAJIYOSHI K, et al. Hydrothermal syntheses of layered lithium nickel manganese oxides from mixed layered Ni(OH)2-manganese oxides[J]. Chemistry of Materials, 2002, 14(9):3844-3851. |
[63] | YANG S Y, WANG X Y, YANG X K, et al. Influence of Li source on tap density and high rate cycling performance of spherical Li[Ni1/3Co1/3Mn1/3]O2 for advanced lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2011, 16(3):1229-1237. |
[64] | SHIN H, PARK S, BAE Y, et al. Synthesis of Li[NiCoMn]O cathode materials via a carbonate process[J]. Solid State Ionics, 2005, 176(35/36):2577-2581. |
[65] | CAO H, ZHANG Y, ZHANG J, et al. Synthesis and electrochemical characteristics of layered LiNiCoMnO cathode material for lithium ion batteries[J]. Solid State Ionics, 2005, 176(13/14):1207-1211. |
[66] | LIU J H, CHEN H Y, XIE J N, et al. Electrochemical performance studies of Li-rich cathode materials with different primary particle sizes[J]. Journal of Power Sources, 2014, 251:208-214. |
[67] | LI X Q, XIONG X H, WANG Z X, et al. Effect of sintering temperature on cycling performance and rate performance of LiNi0.8Co0.1Mn0.1O2[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(12):4023-4029. |
[68] | LI L, ZHANG X X, CHEN R J, et al. Synthesis and electrochemical performance of cathode material Li1.2Co0.13Ni0.13Mn0.54O2 from spent lithium-ion batteries[J]. Journal of Power Sources, 2014, 249:28-34. |
[69] | TODOROV Y M, NUMATA K. Effects of the Li:(Mn+Co+Ni) molar ratio on the electrochemical properties of LiMn1/3Co1/3Ni1/3O2 cathode material[J]. Electrochimica Acta, 2004, 50(2):495-499. |
[70] | ZHANG L Q, WANG X Q, MUTA T, et al. The effects of extra Li content, synthesis method, sintering temperature on synthesis and electrochemistry of layered LiNi1/3Mn1/3Co1/3O2[J]. Journal of Power Sources, 2006, 162(1):629-635.or lithium ion batteries[J]. Materials Chemistry and Physics, 2011, 129(3):729-732. |
[51] | HUA C S, DU K, TAN C P, et al. Study of full concentration-gradient Li(Ni0.8Co0.1Mn0.1)O2 cathode material for lithium ion batteries[J]. Journal of Alloys and Compounds, 2014, 614:264-270. |
[52] | HUANG Y, WANG Z X, LI X H, et al. Synthesis of Ni0.8Co0.1Mn0.1(OH)2 precursor and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium batteries[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(7):2253-2259. |
[53] | ZHANG S, DENG C, FU B L, et al. Synthetic optimization of spherical Li[Ni1/3Mn1/3Co1/3] O2 prepared by a carbonate co-precipitation method[J]. Powder Technology, 2010, 198(3):373-380. |
[54] | HU C Y, GUO J, DU Y, et al. Effects of synthesis conditions on layered Li[Ni1/3Co1/3Mn1/3] O2 positive-electrode via hydroxide co-precipitation method for lithium-ion batteries[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(1):114-120. |
[55] | ZHANG Y, CAO H, ZHANG J, et al. Synthesis of LiNi0.6Co0.2Mn0.2O2 cathode material by a carbonate co-precipitation method and its electrochemical characterization[J]. Solid State Ionics, 2006, 177(37-38):3303-3307. |
[56] | YIN K, FANG W, ZHONG B, et al. The effects of precipitant agent on structure and performance of LiNi1/3Co1/3Mn1/3O2 cathode material via a carbonate co-precipitation method[J]. Electrochimica Acta, 2012, 85:99-103. |
[57] | ZHANG C F, YANG P, DAI X, et al. Synthesis of LiNi1/3Co1/3Mn1/3O2 cathode material via oxalate precursor[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(3):635-641. |
[58] | LI L J, LI X H, WANG Z X, et al. A simple and effective method to synthesize layered LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion battery[J]. Powder Technology, 2011, 206(3):353-357. |
[59] | SHIN Y, CHOI W, HONG Y, et al. Investigation on the microscopic features of layered oxide Li[Ni1/3Co1/3Mn1/3] O2 and their influences on the cathode properties[J]. Solid State Ionics, 2006, 177(5-6):515-521. |
[60] | ZHONG S K, LI W, ZUO Z G, et al. Synthesis and electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode materials[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(6):1499-1503. |
[61] | LI L J, LI X H, WANG ZX, et al. Synthesis of LiNi0.8Co0.1Mn0.1O2 cathode material by chloride co-precipitation method[J]. transactions of Nonferrous Metals Society of China, 2010, 20:279-282. |
[62] | XU Y H, FENG Q, KAJIYOSHI K, et al. Hydrothermal syntheses of layered lithium nickel manganese oxides from mixed layered Ni(OH)2-manganese oxides[J]. Chemistry of Materials, 2002, 14(9):3844-3851. |
[63] | YANG S Y, WANG X Y, YANG X K, et al. Influence of Li source on tap density and high rate cycling performance of spherical Li[Ni1/3Co1/3Mn1/3] O2 for advanced lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2011, 16(3):1229-1237. |
[64] | SHIN H, PARK S, BAE Y, et al. Synthesis of Li[NiCoMn]O cathode materials via a carbonate process[J]. Solid State Ionics, 2005, 176(35-36):2577-2581. |
[65] | LIU J H, CHEN H Y, XIE J N, et al. Electrochemical performance studies of Li-rich cathode materials with different primary particle sizes[J]. Journal of Power Sources, 2014, 251:208-214. |
[66] | CAO H, ZHANG Y, ZHANG J, et al. Synthesis and electrochemical characteristics of layered LiNiCoMnO cathode material for lithium ion batteries[J]. Solid State Ionics, 2005, 176(13-14):1207-1211. |
[67] | LI X Q, XIONG X H, WANG Z X, et al. Effect of sintering temperature on cycling performance and rate performance of LiNi0.8Co0.1Mn0.1O2[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(12):4023-4029. |
[68] | Li L, Zhang X X, Chen R J, et al. Synthesis and electrochemical performance of cathode material Li1.2Co0.13Ni0.13Mn0.54O2 from spent lithium-ion batteries[J]. Journal of Power Sources, 2014, 249:28-34. |
[69] | TODOROV Y M, NUMATA K. Effects of the Li:(Mn+Co+Ni) molar ratio on the electrochemical properties of LiMn1/3Co1/3Ni1/3O2 cathode material[J]. Electrochimica Acta, 2004, 50(2):495-499. |
[70] | ZHANG L Q, WANG X Q, MUTA T, et al. The effects of extra Li content, synthesis method, sintering temperature on synthesis and electrochemistry of layered LiNi1/3Mn1/3Co1/3O2[J]. Journal of Power Sources, 2006, 162(1):629-635. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[3] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[4] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[5] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[6] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[7] | Feng ZHU, Kailin CHEN, Xiaofeng HUANG, Yinzhu BAO, Wenbin LI, Jiaxin LIU, Weiqiang WU, Wangwei GAO. Performance study of KOH modified carbide slag for removal of carbonyl sulfide [J]. CIESC Journal, 2023, 74(6): 2668-2679. |
[8] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[9] | Yuanjing MAO, Zhi YANG, Songping MO, Hao GUO, Ying CHEN, Xianglong LUO, Jianyong CHEN, Yingzong LIANG. Estimation of SAFT-VR Mie equation of state parameters and thermodynamic properties of C6—C10 alcohols [J]. CIESC Journal, 2023, 74(3): 1033-1041. |
[10] | Xueting ZHANG, Jijiang HU, Jing ZHAO, Bogeng LI. Preparation of high molecular weight polypropylene glycol in microchannel reactor [J]. CIESC Journal, 2023, 74(3): 1343-1351. |
[11] | Zhiyuan JIN, Guorong SHAN, Pengju PAN. Preparation and heat and salt resistance of AM/AMPS/SSS terpolymer [J]. CIESC Journal, 2023, 74(2): 916-923. |
[12] | Chengwei LI, Huayong LUO, Mingxuan ZHANG, Peng LIAO, Qian FANG, Hongwei RONG, Jingyin WANG. Microfludically-generated lanthanum hydroxide cross-linked chitosan microspheres for phosphate removal [J]. CIESC Journal, 2022, 73(9): 3929-3939. |
[13] | Yujun MA, Xiangjun LIU. Theoretical studies of water recovery from flue gas by using ceramic membrane [J]. CIESC Journal, 2022, 73(9): 4103-4112. |
[14] | Jianing LIU, Jiahao MA, Junying ZHANG, Jue CHENG. Construction and properties of sequential dual thermal curing thiol-acrylate-epoxy 3D network [J]. CIESC Journal, 2022, 73(9): 4173-4186. |
[15] | Lei ZHONG, Xueqing QIU, Wenli ZHANG. Advances in lignin-derived carbon anodes for alkali metal ion batteries [J]. CIESC Journal, 2022, 73(8): 3369-3380. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||