CIESC Journal ›› 2018, Vol. 69 ›› Issue (1): 317-326.DOI: 10.11949/j.issn.0438-1157.20171186
Previous Articles Next Articles
RUI Zebao1,3, JI Hongbing2,3
Received:
2017-08-29
Revised:
2017-10-28
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20171186
Supported by:
supported by the National Natural Science Foundation of China (21776322, 21576298, U1663220, 21425627) and the Natural Science Foundation of Guangdong Province (2014A030313135, 2014A030308012).
芮泽宝1,3, 纪红兵2,3
通讯作者:
纪红兵
基金资助:
国家自然科学基金项目(21776322,21576298,U1663220,21425627);广东省自然科学基金项目(2014A030313135,2014A030308012)。
CLC Number:
RUI Zebao, JI Hongbing. Multi-scale effect and catalyst design in catalytic combustion of organic waste gas[J]. CIESC Journal, 2018, 69(1): 317-326.
芮泽宝, 纪红兵. 有机废气催化燃烧过程中多尺度效应和催化剂设计[J]. 化工学报, 2018, 69(1): 317-326.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20171186
[1] | TAYLOR S, HENEGHAN C, HUTEHINGS G, et al. The activity and mechanism of uranium oxide catalysts for the oxidative destruction of volatile organic compounds[J]. Catalysis Today, 2000, 59:249-259. |
[2] | KAMAL M, RAZZAK S, HOSSAIN M. Catalytic oxidation of volatile organic compounds (VOCs)-a review[J]. Atmospheric Environment, 2016, 140:117-134. |
[3] | 陈文泰, 邵敏, 袁斌, 等. 大气中挥发性有机物(VOCs)对二次有机气溶胶(SOA)生成贡献的参数化估算[J]. 环境科学学报, 2013, 33:163-172. CHEN W T, SHAO M, YUAN B, et al. Parameterization of contribution to secondary organic aerosol (SOA) formation from ambient volatile organic compounds (VOCs)[J]. Acta Scientiae Circumstantiae, 2013, 33:163-172. |
[4] | FARRAUTO R. Low-temperature oxidation of methane[J]. Science, 2012, 337:659-660. |
[5] | BAI B, QIAO Q, LI J, et al. Progress in research on catalysts for catalytic oxidation of formaldehyde[J]. Chinese Journal of Catalysis, 2016, 37:102-122. |
[6] | ZHANG Z, JIANG Z, SHANGGUAN W. Low-temperature catalysis for VOCs removal in technology and application:a state-of-the-art review[J]. Catalysis Today, 2016, 264:270-278. |
[7] | ZHANG C, LIU F, ZHAI Y, et al. Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures[J]. Angew. Chem. Int. Ed., 2012, 51:9628-9632. |
[8] | LESTINSKY P, BRUMMER V, JECHA D, et al. Design of a catalytic oxidation unit for elimination of volatile organic compound and carbon monoxide[J]. Industrial & Engineering Chemistry Research, 2014, 53:732-737. |
[9] | HU P, AMGHOUZ Z, HUANG Z, et al. Surface-confined atomic silver centers catalyzing formaldehyde oxidation[J]. Environmental Science & Technology, 2015, 49:2384-2390. |
[10] | CHEN C, WU Q, CHEN F, et al. Aluminum-rich beta zeolite-supported platinum nanoparticles for the low-temperature catalytic removal of toluene[J]. Journal of Material Chemistry A, 2015, 3:5556-5562. |
[11] | WU Z, DENG J, LIU Y, et al. Three-dimensionally ordered mesoporous Co3O4-supported Au-Pd alloy nanoparticles:high-performance catalysts for methane combustion[J]. Journal of Catalysis, 2015, 332:13-24. |
[12] | 骆潮明, 李艳霞, 刘中良, 等. 低浓度甲烷在微小燃烧器中的催化燃烧实验[J]. 化工学报, 2015, 66:216-221. LUO C M, LI Y X, LIU Z L, et al. Catalytic combustion of low concentration methane in micro-combustor[J]. CIESC Journal, 2015, 66:216-221. |
[13] | 王业峰, 周俊虎, 赵庆辰, 等. 甲烷与正丁烷微小尺度催化燃烧性能比较[J]. 化工学报, 2017, 68:896-902. WANG Y F, ZHOU J H, ZHAO Q C, et al. Comparison of catalytic combustion of methane and n-butane in microtube[J]. CIESC Journal, 2017, 68:896-902. |
[14] | CHEN C, YEH Y, CARGNELLO M, et al. Methane oxidation on Pd@ZrO2/Si-Al2O3 is enhanced by surface reduction of ZrO2[J]. ACS Catalysis, 2014, 4:3902-3909. |
[15] | CUI W, YUAN X, WU P, et al. Catalytic properties of γ-Al2O3 supported Pt-FeOx catalysts for complete oxidation of formaldehyde at ambient temperature[J]. RSC Advances, 2015, 5:104330-104336. |
[16] | 顾欧昀, 廖永涛, 陈锐杰, 等. 铜锰复合氧化物催化剂上甲苯的催化燃烧[J]. 化工学报, 2016, 67:2832-2840. GU O Y, LIAO Y T, CHEN R J, et al. Catalytic combustion of toluene over Cu-Mn mixed oxide catalyst[J]. CIESC Journal, 2016, 67:2832-2840. |
[17] | REN Z, BOTU V, WANG S, et al. Monolithically integrated spinel MxCo3-xO4(M=Co, Ni, Zn) nanoarray catalysts:scalable synthesis and cation manipulation for tunable low-temperature CH4 and CO oxidation[J]. Angewandte Chemie, 2014, 53:7223-7227. |
[18] | TAO F, SHAN J, NGUYEN L, et al. Understanding complete oxidation of methane on spinel oxides at a molecular level[J]. Nature communications, 2015, 6:7798. |
[19] | HUANG Y, LONG B, TANG M, et al. Bifunctional catalytic material:an ultrastable and high-performance surface defect CeO2 nanosheets for formaldehyde thermal oxidation and photocatalytic oxidation[J]. Applied Catalysis B:Environmental, 2016, 181:779-787. |
[20] | 余鸿敏, 卢晗锋, 陈银飞. Pt掺杂对Cu-Mn-Ce复合氧化物催化燃烧性能的影响[J]. 化工学报, 2011, 62:947-952. YU H M, LU H F, CHEN Y F. Influence of doped Pt on catalytic combustion performance of Cu-Mn-Ce oxide catalysts[J]. CIESC Journal, 2011, 62:947-952. |
[21] | XIE S, LIU Y, DENG J, et al. Three-dimensionally ordered macroporous CeO2-supported Pd@Co nanoparticles:highly active catalysts for methane oxidation[J]. Journal of Catalysis, 2016, 342:17-26. |
[22] | STAIR P, MARSHALL C, XIONG G, et al. Novel, uniform nanostructured catalytic membranes[J]. Topics in Catalysis, 2006, 39:181-186. |
[23] | WANG L, TRAN T, VIEN V O D, et al. Design of novel Pt-structured catalyst on anodic aluminum support for VOC's catalytic combustion[J]. Applied Catalysis A:General, 2008, 350:150-156. |
[24] | AVILA P, MONTES M, MIRÓ E. Monolithic reactors for environmental applications-a review on preparation technologies[J]. Chemical Engineering Journal, 2005, 109:11-36. |
[25] | MASUDA H, FUKUDA K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina[J]. Science, 1995, 268:1466-1468. |
[26] | PAN X, BAO X. The effects of confinement inside carbon nanotubes on catalysis[J]. Accounts of Chemical Research, 2011, 44:553-562. |
[27] | FENG D, RUI Z, JI H. Monolithic-like TiO2 nanotube supported Ru catalyst for activation of CH4 and CO2 to syngas[J]. Catalysis Communication, 2011, 12:1269-1273. |
[28] | FENG D, RUI Z, LU Y, et al. A simple method to decorate TiO2 nanotube arrays with controllable quantity of metal nanoparticles[J]. Chemical Engineering Journal, 2012, 179:363-371. |
[29] | RUI Z, FENG D, CHEN H, et al. Evaluation of TiO2 nanotube supported Ru catalyst for syngas production[J]. Catalysis Today, 2013, 216:178-184. |
[30] | RUI Z, FENG D, CHEN H, et al. Anodic TiO2 nanotube array supported nickel-noble metal bimetallic catalysts for activation of CH4 and CO2 to syngas[J]. International Journal of Hydrogen Energy, 2014, 39:16252-16261. |
[31] | CHEN H, RUI Z, JI H. Monolith-like TiO2 nanotube array supported Pt catalyst for HCHO removal under mild conditions[J]. Industrial & Engineering Chemistry Research, 2014, 53:7629-7636. |
[32] | ZHANG Q, LUAN H, LI T, et al. Study on Pt-structured anodic alumina catalysts for catalytic combustion of toluene:effects of competitive adsorbents and competitive impregnation methods[J]. Applied Surface Science, 2016, 360:1066-1074. |
[33] | RUI Z, TANG M, JI W, et al. Insight into the enhanced performance of TiO2 nanotube supported Pt catalyst for toluene oxidation[J]. Catalysis Today, 2017, 297:159-166. |
[34] | RUI Z, CHEN L, CHEN H, et al. Strong metal-support interaction in Pt/TiO2 induced by mild HCHO and NaBH4 solution reduction and its effect on catalytic toluene combustion[J]. Industrial & Engineering Chemistry Research, 2014, 53:15879-15888. |
[35] | BENARD S, OUSMANE M, RETAILLEAU L, et al. Catalytic removal of propene and toluene in air over noble metal catalyst[J]. Canadian Journal of Civil Engineering, 2009, 36:1935-1945. |
[36] | KIM M, KAMATA T, MASUI T, et al. Complete toluene oxidation on Pt/CeO2-ZrO2-ZnO catalysts[J]. Catalysts, 2013, 3:646-655. |
[37] | ABBASI Z, HAGHIGHI M, FATEHIFAR E, et al. Synthesis and physicochemical characterizations of nanostructured Pt/Al2O3-CeO2 catalysts for total oxidation of VOCs[J]. Journal of Hazardous Materials, 2011, 186:1445-1454. |
[38] | ABDELOUAHAB-REDDAM Z, MAIL R, COLOMA F, et al. Platinum supported on highly-dispersed ceria on activated carbon forthe total oxidation of VOCs[J]. Applied Catalysis A:General, 2015, 494:87-94. |
[39] | BENDAHOU K, CHERIF L, SIFFERT S, et al. The effect of the use of lanthanum-doped mesoporous SBA-15 on the performance of Pt/SBA-15 and Pd/SBA-15 catalysts for total oxidation of toluene[J]. Applied Catalysis A:General, 2008, 351:82-87. |
[40] | CHEN C, CHEN F, ZHANG L, et al. Importance of platinum particle size for complete oxidation of toluene over Pt/ZSM-5 catalysts[J]. Chemical Communication, 2015, 51:5936-5938. |
[41] | UCHISAWA J, KOSUGE K, NANBA T, et al. Effect of meso-and macropore structures of Pt-supported fibrous silica on the catalytic oxidation of toluene[J]. Catalysis Letters, 2009, 133:314-320. |
[42] | ZHAO S, LI K, JIANG S, et al. Pd-Co based spinel oxides derived from Pd nanoparticles immobilized on layered double hydroxides for toluene combustion[J]. Applied Catalysis B:Environmental, 2016, 181:236-248. |
[43] | MASUI T, IMADZU H, MATSUYAMA N, et al. Total oxidation of toluene on Pt/CeO2-ZrO2-BiBi2O3/Al2O3 catalysts prepared in the presence of polyvinyl pyrrolidone[J]. Journal of Hazardous Materials, 2010, 176:1106-1109. |
[44] | RUI Z, LU Y, JI H. Simulation of VOCs oxidation in a catalytic nanolith[J]. RSC Advances, 2013, 3:1103-1111. |
[45] | CHEN H, TANG M, RUI Z, et al. MnO2 promoted TiO2 nanotube array supported Pt catalyst for formaldehyde oxidation with enhanced efficiency[J]. Industrial & Engineering Chemistry Research, 2015, 54:8900-8907. |
[46] | QU Z, BU Y, QIN Y, et al. The improved reactivity of manganese catalysts by Ag in catalytic oxidation of toluene[J]. Applied Catalysis B:Environmental, 2013, 132/133:353-362. |
[47] | SHI C, CHEN B, LI X, et al. Catalytic formaldehyde removal by "storage-oxidation" cycling process over supported silver catalysts[J]. Chemical Engineering Journal, 2012, 200/201/202:729-737. |
[48] | ZOU X, RUI Z, JI H. Core-shell NiO@PdO nanoparticles supported on alumina as an advanced catalyst for methane oxidation[J]. ACS Catalysis, 2017, 7:1615-1625. |
[49] | CHEN H, RUI Z, WANG X, et al. Multifunctional Pt/ZSM-5 catalyst for complete oxidation of gaseous formaldehyde at ambient temperature[J]. Catalysis Today, 2015, 258:56-63. |
[50] | YANG T, HUO Y, LIU Y, et al. Efficient formaldehyde oxidation over nickel hydroxide promoted Pt/γ-Al2O3 with a low Pt content[J]. Applied Catalysis B:Environmental, 2017, 200:543-551. |
[51] | CARGNELLO M, DELGADO JAÉN J, GARRIDO J, et al. Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3[J]. Science, 2012, 337:713-717. |
[52] | FU Q, LI W, YAO Y, et al. Interface-confined ferrous centers for catalytic oxidation[J]. Science, 2010, 328:1141-1144. |
[53] | HUANG H, LEUNG D, YE D. Effect of reduction treatment on structural properties of TiO2 supported Pt nanoparticles and their catalytic activity for formaldehyde oxidation[J]. Journal of Material Chemistry, 2011, 21:9647-9652. |
[54] | RUI Z, WU S, PENG C, et al. Comparison of TiO2 Degussa P25 with anatase and rutile crystalline phases for methane combustion[J]. Chemical Engineering Journal, 2014, 243:254-264. |
[55] | ZOU X, RUI Z, SONG S, et al. Enhanced methane combustion performance over NiAl2O4 interface promoted Pd/γ-Al2O3[J]. Journal of Catalysis, 2016, 338:192-201. |
[56] | ALYANI M, SMITH K. Kinetic analysis of the inhibition of CH4 oxidation by H2O on PdO/Al2O3 and CeO2/PdO/Al2O3 catalysts[J]. Industrial & Engineering Chemistry Research, 2016, 55:8309-8318. |
[57] | CASTELLAZZI P, GROPPI G, FORZATTI P, et al. Role of Pd loading and dispersion on redox behaviour and CH4 combustion activity of Al2O3 supported catalysts[J]. Catalysis Today, 2010, 155:18-26. |
[58] | MOWERY D, GRABOSKI M, OHNO T, et al. Deactivation of PdO-Al2O3 oxidation catalyst in lean-burn natural gas engine exhaust:aged catalyst characterization and studies of poisoning by H2O and SO2[J]. Applied Catalysis B:Environmental, 1999, 21:157-169. |
[59] | EUZEN P, GAL J, REBOURS B, et al. Deactivation of palladium catalyst in catalytic combustion of methane[J]. Catalysis Today, 1999, 47:19-27. |
[60] | PERSSON K, ERSSON A, JANSSON K, et al. Influence of molar ratio on Pd-Pt catalysts for methane combustion[J]. Journal of Catalysis, 2006, 243:14-24. |
[61] | GAO D, ZHANG C, WANG S, et al. Catalytic activity of Pd/Al2O3 toward the combustion of methane[J]. Catalysis Communications, 2008, 9:2583-2587. |
[62] | SETIAWAN A, FRIGGIERI J, BRYANT G, et al. Accelerated hydrothermal ageing of Pd/Al2O3 for catalytic combustion of ventilation air methane[J]. Catalysis Science & Technology, 2015, 5:4008-4016. |
[63] | ROTH D, GÉLIN P, PRIMET M, et al. Catalytic behaviour of Cl-free and Cl-containing Pd/Al2O3 catalysts in the total oxidation of methane at low temperature[J]. Applied Catalysis A:General, 2000, 203:37-45. |
[64] | CHEN G, ZHAO Y, FU G, et al. Interfacial effects in iron-nickel hydroxide-platinum nanoparticles enhance catalytic oxidation[J]. Science, 2014, 344:495-499. |
[65] | KWON D, SEO P, KIM G, et al. Characteristics of the HCHO oxidation reaction over Pt/TiO2 catalysts at room temperature:the effect of relative humidity on catalytic activity[J]. Applied Catalysis B:Environmental, 2015, 163:436-443. |
[66] | BAI B, LI J. Positive effects of K+ ions on three-dimensional mesoporous Ag/Co3O4 catalyst for HCHO oxidation[J]. ACS Catalysis, 2014, 4:2753-2762. |
[67] | CHEN H, RUI Z, Ji H. Titania-supported Pt catalyst reduced with HCHO for HCHO oxidation under mild conditions[J]. Chinese Journal of Catalysis, 2015, 36:88-196. |
[68] | TANG X, CHEN J, HUANG X, et al. Pt/MnOx-CeO2 catalysts for the complete oxidation of formaldehyde at ambient temperature[J]. Applied Catalysis B:Environmental, 2008, 81:115-121. |
[69] | YU X, HE J, WANG D, et al. Facile controlled synthesis of Pt/MnO2 nanostructured catalysts and their catalytic performance for oxidative decomposition of formaldehyde[J]. Journal of Physical Chemistry C, 2012, 116:851-860. |
[70] | ZHANG C, HE H, TANAKA K. Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature[J]. Applied Catalysis B:Environmental, 2006, 65:37-43. |
[71] | 李亚栋. 纳米颗粒化学大幅提升贵金属催化剂的催化活性界面[J]. 中国科学:化学, 2014, 44:1682-1683. LI Y D. Nanoparticle chemistry greatly improves the catalytically active interface of noble metal catalysts[J]. Scientia Sinica Chimica, 2014, 44:1682-1683. |
[72] | CHEN H, TANG M, RUI Z, et al. ZnO modified TiO2 nanotube array supported Pt catalyst for HCHO removal under mild conditions[J]. Catalysis Today, 2016, 264:23-30. |
[73] | LI S, LU X, GUO W, et al. Formaldehyde oxidation on the Pt/TiO2(101) surface:a DFT investigation[J]. Journal of Organometallic Chemistry, 2012, 704:38-48. |
[74] | WANG X, RUI Z, ZENG Y, et al. Synergetic effect of oxygen vacancy and Pd site on the interaction between Pd/anatase TiO2(101) and formaldehyde:a density functional theory study[J]. Catalysis Today, 2017, 297:151-158. |
[75] | JODLOWSKI P, JEDRZEJCZYK R, CHLEBDA D, et al. In situ spectroscopic studies of methane catalytic combustion over Co, Ce, and Pd mixed oxides deposited on a steel surface[J]. Journal of Catalysis, 2017, 350:1-12. |
[76] | 沈柳倩, 钙钛矿型催化剂催化燃烧VOCS的活性、抗毒性和稳定性研究[D]. 杭州:浙江工业大学, 2008. SHEN L Q. Research on the activity, poison resistance and stabilization of the perovskite catalysts for VOCs catalytic combustion[D]. Hangzhou:Zhejiang University of Technology, 2008. |
[77] | 王丽, 谢鸿凯, 戴启广, 等. 稀土基催化材料用于含氯废气催化燃烧的研究进展[J]. 稀有金属, 2017, 41:579-588. WANG L, XIE H K, DAI Q G, et al. Research progress in catalytic removing chlorinated volatile organic compounds by rare earth materials[J]. Rare Metals, 2017, 41:579-588. |
[1] | Zhidong LI, Jiaqi WAN, Ying LIU, Yixi TANG, Wei LIU, Zhongxian SONG, Xuejun ZHANG. α-MnO2/β-MnO2 catalysts synthesized by one-pot method and their catalytic performance for the oxidation of toluene [J]. CIESC Journal, 2022, 73(8): 3615-3624. |
[2] | Xinxin ZENG, Huijuan BAI, Juan YU, Pei HUANG, Chao YANG, Junbo XU. Mesoscale structure and regulation of polyimide resin matrix composites for hypersonic aerospace [J]. CIESC Journal, 2022, 73(6): 2352-2369. |
[3] | Yu QIAN, Yaoxi CHEN, Xiaofei SHI, Siyu YANG. Big data analysis of solar energy fluctuation characteristics and integration of wind-photovoltaic to hydrogen system [J]. CIESC Journal, 2022, 73(5): 2101-2110. |
[4] | CHU Fei, PENG Chuang, JIA Runda, CHEN Tao, LU Ningyun. Online prediction method of batch process product quality based on multi-scale kernel JYMKPLS transfer model [J]. CIESC Journal, 2021, 72(4): 2178-2189. |
[5] | Wei GE, Chengxiang LI, Feiguo CHEN. Pseudo-particle modeling of multi-scale reaction-transport coupling [J]. CIESC Journal, 2021, 72(12): 5928-5935. |
[6] | Zuohua LIU,Hongjun WEI,Xia XIONG,Changyuan TAO,Yundong WANG,Fangqin CHENG. Chaotic mixing performance enhanced by rigid-flexible impeller with long-short blades in stirred tank [J]. CIESC Journal, 2020, 71(11): 5080-5089. |
[7] | Hongzhou TIAN,Gaodong YANG,Guoqiang YANG,Huaxun LUO,Zheng ZHOU,Weimin MENG,Yu CAO,Lei LI,Feng ZHANG,Jian YANG,Zhibing ZHANG. Mass transfer basis of low-pressure hydrogenation for heavy oil in microinterface-intensified slurry-bed reactor [J]. CIESC Journal, 2020, 71(11): 4927-4935. |
[8] | Zuohua LIU,Hongjun WEI,Xia XIONG,Changyuan TAO,Yundong WANG,Fangqin CHENG. Experiment and numerical simulation of chaotic mixing performance enhanced by perturbed rigid-flexible impeller in stirred tank [J]. CIESC Journal, 2020, 71(10): 4621-4631. |
[9] | Xiaoyan XIANG, Yi WEI, Baoyou PEI, Rongxing QIU, Xiaoyan CHEN, Zhaoyang ZHAO, Xiaoyan LUO, Jinqing LIN. Efficient isomerization of glucose to fructose co-catalyzed with basic ionic liquid and sodium borate [J]. CIESC Journal, 2020, 71(1): 290-296. |
[10] | Yanbin HOU,Xianwen GAO,Xiangyu LI. Prediction for dynamic liquid level of sucker rod pumping using generation of multi-scale state characteristics in oil field production [J]. CIESC Journal, 2019, 70(S2): 311-321. |
[11] | Xia XIONG, Zuohua LIU, Deyin GU, Facheng QIU, Liang WANG, Changyuan TAO, Yundong WANG. Chaotic mixing process of fly ash in acid leaching tank intensified by rigid-flexible impeller [J]. CIESC Journal, 2019, 70(5): 1693-1701. |
[12] | Quan TANG, Yanglong GUO, Wangcheng ZHAN, Yun GUO, Li WANG, Yunsong WANG. Catalytic combustion of propane over PdxPty-ZSM-5/Cordierite monolithic catalyst [J]. CIESC Journal, 2019, 70(3): 944-950. |
[13] | Gaipin CAI, Lu ZONG, Xin LIU, Xiaoyan LUO. Load identification method of ball mill based on MEEMD- multi-scale fractal box dimension and ELM [J]. CIESC Journal, 2019, 70(2): 764-771. |
[14] | QIU Facheng, LIU Zuohua, LIU Renlong, QUAN Xuejun, CHEN Jiaxing, GU Deyin, LI Bing, WANG Yundong. Chaotic mixing performance in rigid-flexible impeller stirred tank with eccentric air jet [J]. CIESC Journal, 2018, 69(2): 618-624. |
[15] | RUI Zebao, YANG Xiaoqing, CHEN Junfei, JI Hongbing. Photo-thermal synergistic catalysis for VOCs purification: current status and future perspectives [J]. CIESC Journal, 2018, 69(12): 4947-4958. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||