CIESC Journal ›› 2020, Vol. 71 ›› Issue (11): 4927-4935.DOI: 10.11949/0438-1157.20200820
• Celebration Column for School of Chemistry and Chemical Engineering, Nanjing University • Previous Articles Next Articles
Hongzhou TIAN1,2(),Gaodong YANG1,2,Guoqiang YANG1,2,Huaxun LUO1,2,Zheng ZHOU1,2,Weimin MENG1,2,Yu CAO2,Lei LI1,2,Feng ZHANG1,2,Jian YANG1,2,Zhibing ZHANG1,2()
Received:
2020-06-24
Revised:
2020-09-04
Online:
2020-11-05
Published:
2020-11-05
Contact:
Zhibing ZHANG
田洪舟1,2(),杨高东1,2,杨国强1,2,罗华勋1,2,周政1,2,孟为民1,2,曹宇2,李磊1,2,张锋1,2,杨建1,2,张志炳1,2()
通讯作者:
张志炳
作者简介:
田洪舟(1976—),男,博士,基金资助:
CLC Number:
Hongzhou TIAN,Gaodong YANG,Guoqiang YANG,Huaxun LUO,Zheng ZHOU,Weimin MENG,Yu CAO,Lei LI,Feng ZHANG,Jian YANG,Zhibing ZHANG. Mass transfer basis of low-pressure hydrogenation for heavy oil in microinterface-intensified slurry-bed reactor[J]. CIESC Journal, 2020, 71(11): 4927-4935.
田洪舟,杨高东,杨国强,罗华勋,周政,孟为民,曹宇,李磊,张锋,杨建,张志炳. 微界面强化重油浆态床低压加氢的传质基础[J]. 化工学报, 2020, 71(11): 4927-4935.
Add to citation manager EndNote|Ris|BibTeX
1 | Sahu R, Song B J, Im J S, et al. A review of recent advances in catalytic hydrocracking of heavy residues[J]. Journal of Industrial and Engineering Chemistry, 2015, 27: 12-24. |
2 | 靳爱民. 浆态床渣油加氢技术新进展——CLG公司推出LC-SLURRY工艺[J]. 石油炼制与化工, 2016, 47(8): 92. |
Jin A M. New progress in slurry-bed residual oil hydrogenation technology-CLG launched the LC-SLURRY process[J]. Petroleum Processing and Petrochemicals, 2016, 47(8): 92. | |
3 | 陶梦莹, 侯焕娣, 董明, 等. 浆态床加氢技术的研究进展[J]. 现代化工, 2015, 35(5): 34-37+39. |
Tao M Y, Hou H D, Dong M, et al. Research progress of slurry bed hydrocracking technology[J]. Modern Chemical Industry, 2015, 35(5): 34-37+39. | |
4 | 李雪静, 任文坡. 国内外渣油悬浮床加氢裂化技术进展[J]. 石化技术, 2012, 19(1): 65-70. |
Li X J, Ren W P. Progress in suspension bed hydrocracking technology for residue slurry in oil from domestic and abroad[J]. Petrochemical Industry Technology, 2012, 19(1): 65-70. | |
5 | 刘美, 刘金东, 张树广, 等. 悬浮床重油加氢裂化技术进展[J]. 应用化工, 2017, 46(12): 2435-2440. |
Liu M, Liu J D, Zhang S G, et al. Advances of heavy oil hydrocracking in suspended bed[J]. Applied Chemical Industry, 2017, 46(12): 2435-2440. | |
6 | 李雪静, 乔明, 魏寿祥, 等. 劣质重油加工技术进展与发展趋势[J]. 石化技术与应用, 2019, 37(1): 1-8. |
Li X J, Qiao M, Wei S X, et al. Technical progress and development trend of inferior heavy oil processing[J]. Petrochemical Technology and Application, 2019, 37(1): 1-8. | |
7 | Rana M S, Sámano V, Ancheyta J, et al. A review of recent advances on process technologies for upgrading of heavy oils and residua[J]. Fuel, 2007, 86(9): 1216-1231. |
8 | Zhang S, Liu D, Deng W, et al. A review of slurry-phase hydrocracking heavy oil technology[J]. Energy & Fuels, 2007, 21(6): 3057-3062. |
9 | Liu Y, Gao L, Wen L, et al. Recent advances in heavy oil hydroprocessing technologies[J]. Recent Patents on Chemical Engineering, 2009, 2(1): 22-36. |
10 | Bellussi G, Rispoli G, Landoni A, et al. Hydroconversion of heavy residues in slurry reactors: developments and perspectives[J]. Journal of Catalysis, 2013, 308: 189-200. |
11 | Castaneda L C, Munoz J A D, Ancheyta J. Current situation of emerging technologies for upgrading of heavy oils[J]. Catalysis Today, 2014, 220: 248-273. |
12 | Speight J G. The Chemistry and Technology of Petroleum[M]. 5th ed. Boca Raton: CRC Press, 2014: 433-454. |
13 | Zecevic J, Vanbutsele G, Jong K P, et al. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons[J]. Nature, 2015, 528(7581): 245-254 |
14 | Jacobs P A, Dusselier M, Sels B F. Will zeolite‐based catalysis be as relevant in future biorefineries as in crude oil refineries?[J]. Angewandte Chemie-International Edition, 2014, 53(33): 8621-8626. |
15 | Primo A, Garcia H. Zeolites as catalysts in oil refining[J]. Chemical Society Reviews, 2014, 43(22): 7548-7561. |
16 | Jong K P, Zečević J, Friedrich H, et al. Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts[J]. Angewandte Chemie-International Edition, 2010, 49(52): 10074-10078. |
17 | Bell A T. The impact of nanoscience on heterogeneous catalysis[J]. Science, 2003, 299(5613): 1688-1691. |
18 | Yang R T, Hernandez- Maldonado A J, Yang F H. Desulfurization of transportation fuels with zeolites under ambient conditions[J]. Science, 2003, 301(5629): 79-81. |
19 | Corma A, Díaz-cabañas M J, Martínez-triguero J, et al. A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst[J]. Nature, 2002, 418(6897): 514-517. |
20 | Corma A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions[J]. Chemical Reviews, 1995, 95(3): 559-614. |
21 | 张志炳, 田洪舟, 张锋, 等. 多相反应体系的微界面强化简述[J]. 化工学报, 2018, 69(1): 44-49. |
Zhang Z B, Tian H Z, Zhang F, et al. Overview of microinterface intensification in multiphase reaction systems[J]. CIESC Journal, 2018, 69(1): 44-49. | |
22 | Joosten G E H, Danckwerts P V. Chemical reaction and effective interfacial areas in gas absorption[J]. Chemical Engineering Science, 1973, 28(2): 453-461. |
23 | Puranik S S, Vogelpohl A. Effective interfacial area in irrigated packed columns[J]. Chemical Engineering Science, 1974, 29(2): 501-507. |
24 | Nicklin D J. Two-phase bubble flow[J]. Chemical Engineering Science, 1962, 17(9): 693-702. |
25 | Tian H Z, Pi S F, Feng Y C, et al. One-dimensional drift-flux model of gas holdup in fine-bubble jet reactor[J]. Chemical Engineering Journal, 2020, 386: 121222 |
26 | Fan L S, Tsuchiya K. Bubble Wake Dynamics in Liquids and Liquid-solid Suspensions[M]. Oxford: Butterworth-Heinemann, 1990: 39-48. |
27 | Wang B, Yang G, Tian H, et al. A new model of bubble sauter mean diameter in fine bubble-dominated columns[J]. Chemical Engineering Journal, 2020: 124673. |
28 | Hinze J O. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes[J]. AIChE Journal, 1955, 1(3): 289-295. |
29 | Sevik M, Park S H. The splitting of drops and bubbles by turbulent fluid flow[J]. Journal of Fluids Engineering, 1973, 95(1): 53-60. |
30 | Atkinson B W, Jameson G J, Nguyen A V, et al. Bubble breakup and coalescence in a plunging liquid jet bubble column[J]. Canadian Journal of Chemical Engineering, 2003, 81(3/4): 519-527. |
31 | Xing C T, Wang T F, Guo K Y, et al. A unified theoretical model for breakup of bubbles and droplets in turbulent flows[J]. AIChE Journal, 2015, 61(4): 1391-1403. |
32 | 南京大学. MIHA纯气动操作条件下能量耗散调控模型建模方法: 109887550A[P].2019. |
Nanjing University. Modeling method of energy dissipation regulation model under MIHA pure aerodynamic operating conditions: 109887550A[P]. 2019. | |
33 | Riazi M R. Characterization and Properties of Petroleum Fractions [M]. West Conshohocken, PA: ASTM International, 2005: 111-115. |
34 | Poling B E, Prausnitz J M, O’Connell J P. The Properties of Gases and Liquids[M]. New York: Mcgraw-Hill, 2001. |
35 | Quayle O R. The parachors of organic compounds. An interpretation and catalogue[J]. Chemical Reviews, 1953, 53(3): 439-589. |
36 | The American Petroleum Institute Subcommittee on Technical Data. API Technical Data Book 10th Edition: Introduction[M]. The American Petroleum Institute and EPCON International, 2016. |
37 | Miqueu C, Satherley J, Mendiboure B, et al. The effect of P/N/A distribution on the parachors of petroleum fractions[J]. Fluid Phase Equilibria, 2001, 180(1/2): 327-344. |
38 | Liao Y, Lucas D. A literature review on mechanisms and models for the coalescence process of fluid particles [J]. Chemical Engineering Science, 2010, 65(10): 2851-2864. |
39 | Khuntia S, Majumder S K, Ghosh P. Microbubble-aided water and wastewater purification: a review[J]. Reviews in Chemical Engineering, 2012, 28(4/5/6): 191-221. |
40 | O’dowd W, Smith D N, Ruether J A, et al. Gas and solids behavior in a baffled and unbaffled slurry bubble column[J]. AIChE Journal, 1987, 33(12): 1959-1970. |
41 | Sada E, Kumazawa H, Lee C H, et al. Gas-liquid interfacial area and liquid-side mass-transfer coefficient in a slurry bubble column[J]. Industrial & Engineering Chemistry Research, 1987, 26(1): 112-116. |
42 | Fukuma M, Muroyama K, Yasunishi A. Specific gas-liquid interfacial area and liquid-phase mass transfer coefficient in a slurry bubble column[J]. Journal of Chemical Engineering of Japan, 1987, 20(3): 321-324. |
43 | 张志炳.微界面传质强化技术[M]. 北京: 化学工业出版社, 2020: 295. |
Zhang Z B. Microinterface Mass Transfer Intensification [M]. Beijing: Chemical Industry Press, 2020: 295. |
[1] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[4] | Yuanyuan ZHANG, Jiangyuan QU, Xinxin SU, Jing YANG, Kai ZHANG. Gas-liquid mass transfer and reaction characteristics of SNCR denitration in CFB coal-fired unit [J]. CIESC Journal, 2023, 74(6): 2404-2415. |
[5] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
[6] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[7] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[8] | Zhiguang QIAN, Yue FAN, Shixue WANG, Like YUE, Jinshan WANG, Yu ZHU. Effect of purging conditions on the impedance relaxation phenomenon and low temperature start-up of PEMFC [J]. CIESC Journal, 2023, 74(3): 1286-1293. |
[9] | Yang HE, Senhu GAO, Qingyun WU, Mingli ZHANG, Tao LONG, Pei NIU, Jinghui GAO, Yingqi MENG. Numerical study on heat and mass transfer characteristics of straight slotted fins under wet conditions [J]. CIESC Journal, 2023, 74(3): 1073-1081. |
[10] | Lufan JIA, Yiying WANG, Yuman DONG, Qinyuan LI, Xin XIE, Hao YUAN, Tao MENG. Aqueous two-phase system based adherent droplet microfluidics for enhanced enzymatic reaction [J]. CIESC Journal, 2023, 74(3): 1239-1246. |
[11] | Wanyuan HE, Yiyu CHEN, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Study on gas-liquid mass transfer characteristics in microchannel with array bulges [J]. CIESC Journal, 2023, 74(2): 690-697. |
[12] | Mengxin LIANG, Yan GUO, Shidong WANG, Hongwei ZHANG, Pei YUAN, Xiaojun BAO. Study on preparation of Pd catalyst supported on carbon nitride for the selective hydrogenation of SBS [J]. CIESC Journal, 2023, 74(2): 766-775. |
[13] | Hao ZHANG, Ziyue WANG, Yujie CHENG, Xiaohui HE, Hongbing JI. Progress in the mass production of single-atom catalysts [J]. CIESC Journal, 2023, 74(1): 276-289. |
[14] | Hao XIONG, Xiaoyu LIANG, Chenxi ZHANG, Haolong BAI, Xiaoyu FAN, Fei WEI. Heavy oil to chemicals: multi-stage downer catalytic pyrolysis [J]. CIESC Journal, 2023, 74(1): 86-104. |
[15] | Kuan HUANG, Yongde MA, Zhenping CAI, Yanning CAO, Lilong JIANG. Research progress in catalytic hydroconversion of lipid to second-generation biodiesel [J]. CIESC Journal, 2023, 74(1): 380-396. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||