CIESC Journal ›› 2019, Vol. 70 ›› Issue (3): 944-950.DOI: 10.11949/j.issn.0438-1157.20181110
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Quan TANG(),Yanglong GUO(),Wangcheng ZHAN,Yun GUO,Li WANG,Yunsong WANG
Received:
2018-10-02
Revised:
2018-11-01
Online:
2019-03-05
Published:
2019-03-05
Contact:
Yanglong GUO
通讯作者:
郭杨龙
作者简介:
<named-content content-type="corresp-name">唐铨</named-content>(1993—),女,硕士研究生,<email>809704109@qq.com</email>|郭杨龙(1970—),男,博士,教授,<email>ylguo@ecust.edu.cn</email>
基金资助:
CLC Number:
Quan TANG, Yanglong GUO, Wangcheng ZHAN, Yun GUO, Li WANG, Yunsong WANG. Catalytic combustion of propane over PdxPty-ZSM-5/Cordierite monolithic catalyst[J]. CIESC Journal, 2019, 70(3): 944-950.
唐铨, 郭杨龙, 詹望成, 郭耘, 王丽, 王筠松. 用于丙烷催化燃烧的PdxPty-ZSM-5/Cordierite整体式催化剂[J]. 化工学报, 2019, 70(3): 944-950.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181110
球磨时间/min | 黏度/(mPa·s) | 平均粒径/μm | 上载量/(g?L-1) | 脱落率/% |
---|---|---|---|---|
0 | 84 | 5.6 | 73 | 3.6 |
30 | 264 | 3.3 | 168 | 0.2 |
60 | 378 | 3.2 | 178 | 0.5 |
90 | 439 | 3.5 | 198 | 3.5 |
150 | 523 | 3.4 | 210 | 5.3 |
Table 1 Effect of milling time for slurry on washcoat performance
球磨时间/min | 黏度/(mPa·s) | 平均粒径/μm | 上载量/(g?L-1) | 脱落率/% |
---|---|---|---|---|
0 | 84 | 5.6 | 73 | 3.6 |
30 | 264 | 3.3 | 168 | 0.2 |
60 | 378 | 3.2 | 178 | 0.5 |
90 | 439 | 3.5 | 198 | 3.5 |
150 | 523 | 3.4 | 210 | 5.3 |
催化剂 | T50/℃ | T90 /℃ |
---|---|---|
Pd-ZSM-5/Cordierite | 302 | 342 |
Pd4Pt1-ZSM-5/Cordierite | 337 | 383 |
Pd2Pt3-ZSM-5/Cordierite | 259 | 323 |
Pd3Pt2-ZSM-5/Cordierite | 293 | 337 |
Pd1Pt4-ZSM-5/Cordierite | 301 | 374 |
Pt-ZSM-5/Cordierite | 319 | 403 |
Table 2 Effect of mass ratio of Pd/Pt on catalytic activity of monolithic catalysts
催化剂 | T50/℃ | T90 /℃ |
---|---|---|
Pd-ZSM-5/Cordierite | 302 | 342 |
Pd4Pt1-ZSM-5/Cordierite | 337 | 383 |
Pd2Pt3-ZSM-5/Cordierite | 259 | 323 |
Pd3Pt2-ZSM-5/Cordierite | 293 | 337 |
Pd1Pt4-ZSM-5/Cordierite | 301 | 374 |
Pt-ZSM-5/Cordierite | 319 | 403 |
1 | DuanJ C, TanJ H, YangL, et al. Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing[J]. Atmospheric Research, 2008, 88(1): 25-35. |
2 | HuangB B, LeiC, WeiC H, et al. Chlorinated volatile organic compounds (Cl-VOCs) in environment-sources, potential human health impacts, and current remediation technologies[J]. Environment International, 2014, 71(4): 118-138. |
3 | LiottaL F. Catalytic oxidation of volatile organic compounds on supported noble metals[J]. Applied Catalysis B: Environmental, 2010, 100(3/4): 403-412. |
4 | LiW B, WangJ X, GongH. Catalytic combustion of VOCs on non-noble metal catalysts[J]. Catalysis Today, 2009, 148(1/2): 81-87. |
5 | ZhangZ, JiangZ, ShangguanW. Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review[J]. Catalysis Today, 2016, 264: 270-278. |
6 | KamalM S, RazzakS A, HossainM M. Catalytic oxidation of volatile organic compounds (VOCs) — a review[J]. Atmospheric Environment, 2016, 140: 117-134. |
7 | XieY J, YuY Y, GongX Q, et al. Effect of the crystal plane figure on the catalytic performance of MnO2 for the total oxidation of propane[J]. CrystEngComm, 2015, 17(15): 3005-3014. |
8 | XieY J, GuoY, GuoY L, et al. A highly effective Ni-modified MnOx catalyst for total oxidation of propane: the promotional role of nickel oxide[J]. RSC Advances, 2016, 6(55): 50228-50237. |
9 | XieY J, GuoY, GuoY L, et al. A highly-efficient La-MnOx catalyst for propane combustion: the promotional role of La and the effect of the preparation method[J]. Catalysis Science & Technology, 2016, 6(23): 8222-8233. |
10 | HuZ, QiuS, YouY, et al. Hydrothermal synthesis of NiCeOx nanosheets and its application to the total oxidation of propane[J]. Applied Catalysis B: Environmental, 2018, 225: 110-120. |
11 | HuZ, WangZ, GuoY, et al. Total oxidation of propane over a Ru/CeO2 catalyst at low temperature[J]. Environmental Science & Technology, 2018, 52(16): 9531-9541. |
12 | OkalJ, ZawadzkiM, TylusW. Microstructure characterization and propane oxidation over supported Ru nanoparticles synthesized by the microwave-polyol method[J]. Applied Catalysis B: Environmental, 2011, 101(3/4): 548-559. |
13 | OkalJ, ZawadzkiM. Combustion of propane over novel zinc aluminate-supported ruthenium catalysts[J]. Applied Catalysis B: Environmental, 2011, 105(1/2): 182-190. |
14 | ZhuZ Z, LuG Z, ZhangZ G, et al. Highly active and stable Co3O4/ZSM-5 catalyst for propane oxidation: effect of the preparation method[J]. ACS Catalysis, 2013, 3(6): 1154-1164. |
15 | HuZ, LiuX F, MengD M, et al. Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/ceria for CO and propane oxidation[J]. ACS Catalysis, 2016, 6(4): 2265-2279. |
16 | ZhuZ Z, LuG Z, GuoY, et al. High performance and stability of the Pt-W/ZSM-5 catalyst for the total oxidation of propane: the role of tungsten[J]. Chemcatchem, 2013, 5(8): 2495-2503. |
17 | AvilaM S, VignattiC R, ApesteguíaC R, et al. Effect of support on the deep oxidation of propane and propylene on Pt-based catalysts[J]. Chemical Engineering Journal, 2014, 241: 52-59. |
18 | ParkJ E, KimK B, SeoK W, et al. Propane combustion over supported Pt catalysts[J]. Research on Chemical Intermediates, 2011, 37(9): 1135-1143. |
19 | MailletT, SolleauC, J JrBarbier, et al. Oxidation of carbon monoxide, propene, propane and methane over a Pd/Al2O3 catalyst. Effect of the chemical state of Pd[J]. Applied Catalysis B Environmental, 1997, 14(1/2): 85-95. |
20 | MailletT, J JrBarbier, DuprezD. Reactivity of steam in exhaust gas catalysis(Ⅲ): Steam and oxygen/steam conversions of propane on a Pd/Al2O3 catalyst[J]. Applied Catalysis B Environmental, 1996, 9(1/2/3/4): 251-266. |
21 | YazawaY, TakagiN, YoshidaH, et al. The support effect on propane combustion over platinum catalyst: control of the oxidation-resistance of platinum by the acid strength of support materials[J]. Applied Catalysis A General, 2002, 233(1/2): 103-112. |
22 | GarettoT F, RincónE, ApesteguíaC R. Deep oxidation of propane on Pt-supported catalysts: drastic turnover rate enhancement using zeolite supports[J]. Applied Catalysis B: Environmental, 2004, 48(3): 167-174. |
23 | 单学蕾, 关乃佳, 曾翔, 等. 不同硅铝比的Cu-ZSM-5/堇青石整体式催化剂的NO分解反应性能[J]. 催化学报, 2001, 22(3): 242-244. |
ShanX L, GuanN J, ZengX, et al. NO decomposition on Cu-ZSM-5/cordierite monolithic catalyst samples with different Si/Al ratios[J]. Chinese Journal of Catalysis, 2001, 22(3): 242-244. | |
24 | WangS N, CuiY J, LanL, et al. A new monolithic Pt-Pd-Rh motorcycle exhaust catalyst to meet future emission standards[J]. Chinese Journal of Catalysis, 2014, 35(9): 1482-1491. |
25 | DeugdR M D, KapteijnF, MoulijnJ A. Using monolithic catalysts for highly selective Fischer-Tropsch synthesis[J]. Catalysis Today, 2003, 79/80(3): 495-501. |
26 | SchneiderR, KießlingD, WendtG. Cordierite monolith supported perovskite-type oxides — catalysts for the total oxidation of chlorinated hydrocarbons[J]. Applied Catalysis B: Environmental, 2000, 28(3/4): 187-195. |
27 | Colman-LernerE, PelusoM A, SambethJ, et al. Cerium, manganese and cerium/manganese ceramic monolithic catalysts. Study of VOCs and PM removal[J]. Journal of Rare Earths, 2016, 34(7): 675-682. |
28 | 江浩, 郭杨龙, 张志刚, 等. Ni对单Pd型挥发性有机废气净化催化剂的助催化作用[J]. 无机化学学报, 2006, 22(7): 1210-1214. |
JiangH, GuoY L, ZhangZ G, et al. Promotion of Ni on performance of Pd-only catalyst for destractive removal of volatile organic wastes[J]. Chinese Journal of Inorganic Chemistry, 2006, 22(7): 1210-1214. | |
29 | MitraB, KunzruD. Washcoating of different zeolites on cordierite monoliths[J]. Journal of the American Ceramic Society, 2008, 91(1): 64-70. |
30 | CarvalhoL S, PieckC L, RangelM C, et al. Trimetallic naphtha reforming catalysts(I):Properties of the metal function and influence of the order of addition of the metal precursors on Pt-Re-Sn/γ-Al2O3-Cl[J]. Applied Catalysis A: General, 2004, 269(1/2): 91-103. |
31 | ZhuZ Z, LuG Z, GuoY, et al. Influences of Pd precursors and preparation method on the catalytic performances of Pd-only close-coupled catalysts[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(6): 2135-2140. |
32 | ElangovanS P, OguraM, ErnstS, et al. A comparative study of zeolites SSZ-33 and MCM-68 for hydrocarbon trap applications[J]. Microporous & Mesoporous Materials, 2006, 96(1/2/3): 210-215. |
[1] | Zhidong LI, Jiaqi WAN, Ying LIU, Yixi TANG, Wei LIU, Zhongxian SONG, Xuejun ZHANG. α-MnO2/β-MnO2 catalysts synthesized by one-pot method and their catalytic performance for the oxidation of toluene [J]. CIESC Journal, 2022, 73(8): 3615-3624. |
[2] | Chan WANG, Guoxi XIAO, Xiaoxue GUO, Renwei XU, Yuanyuan YUE, Xiaojun BAO. Green synthesis and application of Beta zeolite prepared via mesoscale depolymerization-reorganization strategy [J]. CIESC Journal, 2022, 73(6): 2690-2697. |
[3] | Feng YE, Gang LI, Xin FU, Xuemei LANG, Yanhong WANG, Shenglong WANG, Jianli ZHANG, Shuanshi FAN. A simulation study on propane dehydrogenation in porous membrane reactors for propylene production [J]. CIESC Journal, 2022, 73(5): 2008-2019. |
[4] | Duotao PAN, Xudong WANG, Hongyan SHI, Zhilong XIU. Steady-state analysis and feedback control of continuous fermentation for bio-based 1, 3-propanediol [J]. CIESC Journal, 2022, 73(5): 2094-2100. |
[5] | Xinye HUANG, Ye ZHANG, Shuyuan ZHANG, Zhen CHEN, Tong QIU. Application of Bayesian optimization method in the production of 1,3-propanediol by Vibrio natriegens [J]. CIESC Journal, 2022, 73(11): 5039-5046. |
[6] | TIAN Yajie, LIN Wensheng. Comparison of solutions of LNG heat exchangers used on LNG powered ships [J]. CIESC Journal, 2018, 69(S2): 141-146. |
[7] | WAN Xingchen, LIN Wensheng. Flow boiling heat transfer of propane in helically coiled tube [J]. CIESC Journal, 2018, 69(S2): 135-140. |
[8] | DING Chao, HU Haitao, DING Guoliang, CHEN Jie, MI Xiaoguang, YU Sicong. Influences of working conditions on heat transfer characteristics in shell side of LNG spiral wound heat exchangers [J]. CIESC Journal, 2018, 69(6): 2417-2423. |
[9] | WU Houxiao, CHEN Yongwei, LIANG Junjie, SHI Renfeng, XIA Qibin, LI Zhong. Adsorption isotherms and selectivity of CH4/C2H6/C3H8 on MOF-505@5GO [J]. CIESC Journal, 2018, 69(4): 1500-1507. |
[10] | RUI Zebao, JI Hongbing. Multi-scale effect and catalyst design in catalytic combustion of organic waste gas [J]. CIESC Journal, 2018, 69(1): 317-326. |
[11] | LI Chenyang, FENG Miao, CUI Haifeng, CAO Guiping, LÜ Hui, CHEN Rongqi. Preparation of carbon nanotube catalyst on structure-modified cordierite monolith for polystyrene hydrogenation [J]. CIESC Journal, 2017, 68(7): 2746-2754. |
[12] | GU Ouyun, LIAO Yongtao, CHEN Ruijie, JIA Lu, KAMEYAMA Hideo, LIN Yi, ZHOU Lü, MA Hua, GUO Yu. Catalytic combustion of toluene over Cu-Mn mixed oxide catalyst [J]. CIESC Journal, 2016, 67(7): 2832-2840. |
[13] | LIU Jiang, WU Yufang, XU Feng, XIAO Jing, XIA Qibin, LI Zhong. Effects of temperature on adsorption mechanism and adsorption selectivity of C3H6 and C3H8 on MOF-74(Ni) [J]. CIESC Journal, 2016, 67(5): 1942-1948. |
[14] | SHAO Gaosong. Preparation and catalytic activity of hierarchical interlinked structure of cabbage-leaf-like cerium phosphate materials [J]. CIESC Journal, 2016, 67(4): 1601-1609. |
[15] | ZHANG Li, XING Yaohua, ZHONG Jie, XU Hong, CAO Jun. Experimental study on reactor integrating catalytic combustion and steam reforming for 1 kW SOFC-CHP [J]. CIESC Journal, 2016, 67(2): 557-562. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||