CIESC Journal ›› 2018, Vol. 69 ›› Issue (12): 4947-4958.DOI: 10.11949/j.issn.0438-1157.20180520
Previous Articles Next Articles
RUI Zebao1, YANG Xiaoqing1, CHEN Junfei1, JI Hongbing2
Received:
2018-05-21
Revised:
2018-08-23
Online:
2018-12-05
Published:
2018-12-05
Supported by:
supported by the National Natural Science Foundation of China (21776322, 21576298, U1663220, 21425627).
芮泽宝1, 杨晓庆1, 陈俊妃1, 纪红兵2
通讯作者:
芮泽宝
基金资助:
国家自然科学基金项目(21776322,21576298,U1663220,21425627)。
CLC Number:
RUI Zebao, YANG Xiaoqing, CHEN Junfei, JI Hongbing. Photo-thermal synergistic catalysis for VOCs purification: current status and future perspectives[J]. CIESC Journal, 2018, 69(12): 4947-4958.
芮泽宝, 杨晓庆, 陈俊妃, 纪红兵. 光热协同催化净化挥发性有机物的研究进展及展望[J]. 化工学报, 2018, 69(12): 4947-4958.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180520
[1] | LI W, WANG J, GONG H. Catalytic combustion of VOCs on non-noble metal catalysts[J]. Catalysis Today, 2009, 148:81-87. |
[2] | FANG S, LI Y, YANG Y, et al. Mg doped OMS-2 nanorod:a highly efficient catalyst for purification of volatile organic compounds with full solar spectrum irradiation[J]. Environmental Science Nano, 2017, 4:1798-1807. |
[3] | HAN W, DENG J, XIE S, et al. Gold supported on iron oxide nanodisk as efficient catalyst for the removal of toluene[J]. Industrial & Engineering Chemistry Research, 2014, 53:3486-3494. |
[4] | ZHAO S, LI K, JIANG S, et al. Pd-Co based spinel oxides derived from Pd nanoparticles immobilized on layered double hydroxides for toluene combustion[J]. Applied Catalysis B:Environmental, 2016, 181:236-248. |
[5] | RUI Z, TANG M, JI W, et al. Insight into the enhanced performance of TiO2 nanotube supported Pt catalyst for toluene oxidation[J]. Catalysis Today, 2017, 297:159-166. |
[6] | HUANG Y, LONG B, TANG M, et al. Bifunctional catalytic material:an ultrastable and high-performance surface defect CeO2 nanosheets for formaldehyde thermal oxidation and photo-catalytic oxidation[J]. Applied Catalysis B:Environmental, 2016, 181:779-787. |
[7] | YANG T, HUO Y, LIU Y, et al. Efficient formaldehyde oxidation over nickel hydroxide promoted Pt/γ-Al2O3 with a low Pt content[J]. Applied Catalysis B:Environmental, 2017, 200:543-551. |
[8] | ZOU X, RUI Z, JI H. Core-shell NiO@PdO nanoparticles supported on alumina as an advanced catalyst for methane oxidation[J]. ACS Catalysis, 2017, 7:1615-1625. |
[9] | 芮泽宝, 纪红兵. 有机废气催化燃烧过程中多尺度效应和催化剂设计[J]. 化工学报, 2018, 69(1):317-326. RUI Z B, JI H B. Multi-scale effect and catalyst design in catalytic combustion of organic waste gas[J]. CIESC Journal, 2018, 69(1):317-326. |
[10] | 顾欧昀, 廖永涛, 陈锐杰, 等. 铜锰复合氧化物催化剂上甲苯的催化燃烧[J]. 化工学报, 2016, 67(7):2832-2840. GU O Y, LIAO Y T, CHEN R J, et al. Copper manganese oxide catalysts for toluene combustion[J]. CIESC Journal, 2016, 67(7):2832-2840. |
[11] | WANG Y, XUE Y, ZHAO C, et al. Catalytic combustion of toluene with La0.8Ce0.2MnO3 supported on CeO2 with different morphologies[J]. Chemical Engineering Journal, 2016, 300:300-305. |
[12] | CHEN H, TANG M, RUI Z, et al. MnO2 promoted TiO2 nanotube array supported Pt catalyst for formaldehyde oxidation with enhanced efficiency[J]. Industrial & Engineering Chemistry Research, 2015, 54:8900-8907. |
[13] | WANG M, ZHANG F, ZHU X, et al. DRIFTS evidence for facet-dependent adsorption of gaseous toluene on TiO2 with relative photo-catalytic properties[J]. Langmuir, 2015, 31:1730-1736. |
[14] | KONG J, RUI Z, JI H. Enhanced photo-catalytic mineralization of gaseous toluene over SrTiO3 by surface hydroxylation[J]. Industrial & Engineering Chemistry Research, 2016, 55:11923-11930. |
[15] | QIAN X, REN M, YUE D, et al. Mesoporous TiO2 films coated on carbon foam based on waste polyurethane for enhanced photocatalytic oxidation of VOCs[J]. Applied Catalysis B:Environmental, 2017, 212:1-6. |
[16] | TIAN M, LIAO F, KE Q, et al. Synergetic effect of titanium dioxide ultralong nanofibers and activated carbon fibers on adsorption and photo-degradation of toluene[J]. Chemical Engineering Journal, 2017, 328:962-976. |
[17] | KONG J, RUI Z, LIU S, et al. Homeostasis in CuxO/SrTiO3 hybrid allows highly active and stable visible light photocatalytic performance[J]. Chemical Communications, 2017, 53:12329-12332. |
[18] | KONG J, LAI X, RUI Z, et al. Multichannel charge separation promoted ZnO/P25 heterojunctions for the photo-catalytic oxidation of toluene[J]. Chinese Journal of Catalysis, 2016, 37:869-877. |
[19] | KONG J, RUI Z, WANG X, et al. Visible-light decomposition of gaseous toluene over BiFeO3-(Bi/Fe)2O3 heterojunctions with enhanced performance[J]. Chemical Engineering Journal, 2016, 302:552-559. |
[20] | KONG J, RUI Z, JI H. Carbon nitride polymer sensitization and nitrogen doping of SrTiO3/TiO2 nanotube heterostructure toward high visible light photocatalytic performance[J]. Industrial & Engineering Chemistry Research, 2017, 56:9999-10008. |
[21] | LI Y, HUANG J, PENG T, et al. Photo-thermo-catalytic synergetic effect leads to high efficient detoxification of benzene on TiO2 and Pt/TiO2 nanocomposite[J]. ChemCatChem, 2010, 2:1082-1087. |
[22] | SELISHCHEV D, KOLOBOV N, PERSHIN A, et al. TiO2 mediated photocatalytic oxidation of volatile organic compounds:formation of CO as a harmful by-product[J]. Applied Catalysis B:Environmental, 2017, 200:503-513. |
[23] | JI J, XU Y, HUANG H, et al. Mesoporous TiO2 under VUV irradiation:enhanced photocatalytic oxidation for VOCs degradation at room temperature[J]. Chemical Engineering Journal, 2017, 327:490-499. |
[24] | KENNEDY J, DATYE A. Photo-thermal heterogeneous oxidation of ethanol over Pt/TiO2[J]. Journal of Catalysis, 1998, 179:375-389. |
[25] | 王光平, 仇伟, 任成军, 等. 混晶Zr掺杂Pt/TiO2催化剂光热催化氧化苯[J]. 催化学报, 2009, 30:913-918. WANG G P, QIU W, REN C J, et al. Photo-thermal catalytic oxidation of benzene by mixed crystal Zr doped Pt/TiO2[J]. Chinese Journal of Catalysis, 2009, 30:913-918. |
[26] | ZHENG Y, WANG W, JIANG D, et al. Insights into the solar light driven thermo-catalytic oxidation of VOCs over tunnel structured manganese oxides[J]. Physical Chemistry Chemical Physics, 2016, 18:18180-18186. |
[27] | NAKANO K, OBUCHI E, NANRI M. Thermo-photo-catalytic decomposition of acetaldehyde over Pt-TiO2/SiO2[J]. Chemical Engineering Research & Design, 2004, 82:297-301. |
[28] | TAN T, SCOTT J, YUN H, et al. Understanding plasmon and band gap photoexcitation effects on the thermal-catalytic oxidation of ethanol by TiO2-supported gold[J]. ACS Catalysis, 2017, 6:1870-1879. |
[29] | CHEN J, HE Z, LI G, et al. Visible-light-enhanced photo-thermo-catalytic activity of ABO3-type perovskites for the decontamination of gaseous styrene[J]. Applied Catalysis B:Environmental, 2017, 209:146-154. |
[30] | LARSEN G, FARR W, MURPH S. Multifunctional Fe2O3-Au nanoparticles with different shapes:enhanced catalysis photothermal effects and magnetic recyclability[J]. Journal of Physical Chemistry C, 2016, 120:15162-15172. |
[31] | MAHMOUD M, EL-SAYED M. Enhancing catalytic efficiency of hollow palladium nanoparticles by photo-thermal heating of gold nanoparticles added to the cavity:palladium-gold nanorattles[J]. ChemCatChem, 2015, 6:3540-3546. |
[32] | XU J, LI X, WU X, et al. Hierarchical CuO colloidosomes and their structure enhanced photothermal catalytic activity[J]. Journal of Physical Chemistry C, 2016, 120:12666-12672. |
[33] | ZHONG H, WEI Y, YUE Y, et al. Preparation of core-shell Ag@CeO2 nanocomposite by LSPR photo-thermal induced interface reaction[J]. Nanotechnology, 2016, 27:135701. |
[34] | NIKITENKO S, CHAVE T, CAU C, et al. Photothermal hydrogen production using noble metal-free Ti@TiO2 core-shell nanoparticles under visible-NIR light irradiation[J]. ACS Catalysis, 2015, 5:4790-4795. |
[35] | LIU X, YE L, MA Z, et al. Photo-thermal effect of infrared light to enhance solar catalytic hydrogen generation[J]. Catalysis Communications, 2017, 102:13-16. |
[36] | XU L, HA M, GUO Q, et al. Photo-thermal catalytic activity of combustion synthesized LaCoxFe1-xO3 (0 ≤ x ≤ 1) perovskite for CO2 reduction with H2O to CH4 and CH3OH[J]. RSC Advances, 2017, 7:45949-45959. |
[37] | WANG L, WANG Y, CHENG Y, et al. Hydrogen-treated mesoporous WO3 as a reducing agent of CO2 to fuels (CH4 and CH3OH) with enhanced photo-thermal catalytic performance[J]. Journal of Materials Chemistry A, 2016, 4:5314-5322. |
[38] | MENG X, WANG T, LIU L, et al. Photo-thermal conversion of CO2 into CH4 with H2 over group Ⅷ nanocatalysts:an alternative approach for solar fuel production[J]. Angewandte Chemie International Edition, 2014, 53:11478-82. |
[39] | HOU J, LI Y, MAO M, et al. Full solar spectrum light driven thermo-catalysis with extremely high efficiency on nanostructured Ce ion substituted OMS-2 catalyst for VOCs purification[J]. Nanoscale, 2015, 7:2633-2640. |
[40] | HOU J, LI Y, MAO M, et al. Tremendous effect of the morphology of birnessite-type manganese oxide nanostructures on catalytic activity[J]. ACS Applied Materials & Interfaces, 2014, 6:14981-14987. |
[41] | YANG Y, LI Y, MAO M, et al. UV-Vis-infrared light driven thermo-catalysis for environmental purification on ramsdellite MnO2 hollow spheres considerably promoted by a novel photoactivation[J]. ACS Applied Materials & Interfaces, 2017, 9:2350-2357. |
[42] | HU C, LIN L, HU X. Morphology of metal nanoparticles photo-deposited on TiO2/silical gel and photothermal activity for destruction of ethylene[J]. Chinese Journal of Environmental Science (English Edition), 2006, 18:76-82. |
[43] | REN C, ZHOU T, CHEN G, et al. Pt-TiO2/CeO2-MnO2 composite catalyst photo-thermal degradation of gas phase benzene[J]. Chinese Journal of Catalysis, 2006, 27:1048-1050. |
[44] | GU Y, JIAO Y, ZHOU X, et al. Strongly coupled Ag/TiO2 heterojunctions for effective and stable photothermal catalytic reduction of 4-nitrophenol[J]. Nano Research, 2017, 11:1-16. |
[45] | REN L, MAO M, LI Y, et al. Novel photo-thermo-catalytic synergetic effect leads to high catalytic activity and excellent durability of anatase TiO2 nanosheets with dominant {001} facets for benzene abatement[J]. Applied Catalysis B:Environmental, 2016, 198:303-310. |
[46] | MAO M, LI Y, HOU J, et al. Extremely efficient full solar spectrum light driven thermo-catalytic activity for the oxidation of VOCs on OMS-2 nanorod catalyst[J]. Applied Catalysis B:Environmental, 2015, s174/175:496-503. |
[47] | ARANDIYAN H, DAI H, DENG J, et al. Three-dimensionally ordered macroporous La0.6Sr0.4MnO3 supported Ag nanoparticles for the combustion of methane[J]. Journal of Physical Chemistry C, 2014, 118:14913-14928. |
[48] | ZOU J, SI Z, CAO Y, et al. Localized surface plasmon resonance assisted photo-thermal catalysis of CO and toluene oxidation over Pd-CeO2 catalyst under visible light irradiation[J]. Journal of Physical Chemistry C, 2016, 120:29116-29125. |
[49] | LI Y, MAO M, LV H, et al. Efficient UV-Vis-IR light-driven thermocatalytic purification of benzene on Pt/CeO2 nanocomposite significantly promoted by hot electron-induced photoactivation[J]. Environmental Science Nano, 2016, 4:373-384. |
[50] | WANG P, HUANG B, QIN X, et al. Ag@AgCl:a highly efficient and stable photocatalyst active under visible light[J]. Angewandte Chemie International Edition, 2008, 47:7931-7933. |
[51] | SCHUCK P. Nanoimaging:hot electrons go through the barrier[J]. Nature Nanotechnology, 2013, 8:799-800. |
[52] | KALE M, CHRISTOPHER P. Plasmons at the interface[J]. Science, 2015, 349:587-588. |
[53] | WU K, CHEN J, MCBRIDE J, et al. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition[J]. Science, 2015, 349:632-635. |
[54] | NIU W, ZHANG W, FIRDOZ S, et al. Controlled synthesis of palladium concave nanocubes with sub-10-nanometer edges and corners for tunable plasmonic property[J]. Chemistry of Material, 2014, 26:2180-2186. |
[55] | QIU J, WEI W. Surface plasmon-mediated photo-thermal chemistry[J]. Journal of Physical Chemistry C, 2014, 118:20735-20749. |
[56] | MANJAVACAS A, LIU J, KULKARNI V, et al. Plasmon-induced hot carriers in metallic nanoparticles[J]. ACS Nano, 2014, 8:7630-7638. |
[57] | 孔洁静. 基于钙钛矿型复合氧化物高效光催化净化VOCs体系的构建[D]. 广州:中山大学, 2017. KONG J J. Perovskite-based composite oxides for effective photocatalytic degradation of VOCs[D]. Guangzhou:Sun Yat-sen University, 2017. |
[58] | YANG C, BALAKRISHNAN N, BHETHANABOTLA V, et al. Interplay between subnanometer Ag and Pt clusters and anatase TiO2 (101) surface:implications for catalysis and photocatalysis[J]. Journal of Physical Chemistry C, 2017, 118:4702-4714. |
[59] | QIU Y, WU L, LI J, et al. Preparation of titanate/N-doped anatase composite hierarchical microspheres with enhanced visible light photocatalytic activity[J]. Catalysis Letters, 2015, 145:647-653. |
[60] | ZENG M, LI Y, MAO M, et al. Synergetic effect between photo-catalysis on TiO2 and thermo-catalysis on CeO2 for gas-phase oxidation of benzene on TiO2/CeO2 nanocomposites[J]. ACS Catalysis, 2015, 5:3278-3286. |
[61] | LI Y, SUN Q, KONG M, et al. Coupling oxygen ion conduction to photo-catalysis in mesoporous nanorod-like ceria significantly improves photo-catalytic efficiency[J]. Journal of Physical Chemistry C, 2011, 115:14050-14057. |
[62] | GANG W, HUANG B, LOU Z, et al. Valence state heterojunction Mn3O4/MnCO3:photo and thermal synergistic catalyst[J]. Applied Catalysis B:Environmental, 2016, 180:6-12. |
[63] | PELUSO M, GAMBARO L, PRONSATO E, et al. Synthesis and catalytic activity of manganese dioxide (type OMS-2) for the abatement of oxygenated VOCs[J]. Catalysis Today, 2008, s133/134/135:487-492. |
[64] | HOU J, LIU L, LI Y, et al. Tuning the K+ concentration in the tunnel of OMS-2 nanorods leads to a significant enhancement of the catalytic activity for benzene oxidation[J]. Environmental Science & Technology, 2013, 47:13730-13736. |
[65] | KÄHLER K, HOLZ M, ROHE M, et al. Methanol oxidation as probe reaction for active sites in Au/ZnO and Au/TiO2 catalysts[J]. Journal of Catalysis, 2013, 299:162-170. |
[66] | ZHANG C, LIU F, ZHAI Y, et al. Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures[J]. Angewandte Chemie International Edition, 2012, 51:9628-9632. |
[67] | JODLOWSKI P, JEDRZEJCZYK R, CHLEBDA D, et al. In situ spectroscopic studies of methane catalytic combustion over Co, Ce, and Pd mixed oxides deposited on a steel surface[J]. Journal of Catalysis, 2017, 350:1-12. |
[68] | LI S, LU X, GUO W, et al. Formaldehyde oxidation on the Pt/TiO2(101) surface:a DFT investigation[J]. Journal of Organometallic Chemistry, 2012, 704:38-48. |
[69] | WANG X, RUI Z, ZENG Y, et al. Synergetic effect of oxygen vacancy and Pd site on the interaction between Pd/Anatase TiO2(101) and formaldehyde:a density functional theory study[J]. Catalysis Today, 2017, 297:151-158. |
[70] | ROSTAMI R, JONIDI J. Application of an adsorptive-thermocatalytic process for BTX removal from polluted air flow[J]. Journal of Environmental Health Science & Engineering, 2014, 12:89. |
[71] | CHEN H, RUI Z, WANG X, et al. Multifunctional Pt/ZSM-5 catalyst for complete oxidation of gaseous formaldehyde at ambient temperature[J]. Catalysis Today, 2015, 258:56-63. |
[1] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[2] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[3] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[4] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
[5] | Jian JIAN, Jiaming ZHANG, Xiang SHE, Hu ZHOU, Kuiyi YOU, Hean LUO. Correlation with the redox V4+/V5+ ratio in VPO catalysts for oxidation of cyclohexane by NO2 [J]. CIESC Journal, 2023, 74(4): 1570-1577. |
[6] | Yulong HUANG, Fan LYU, Junjie QIU, Hua ZHANG, Pinjing HE. Physicochemical properties and VOCs molecular characteristics of liquid digestate from anaerobic digestion of putrescible waste [J]. CIESC Journal, 2023, 74(3): 1275-1285. |
[7] | Zhidong LI, Jiaqi WAN, Ying LIU, Yixi TANG, Wei LIU, Zhongxian SONG, Xuejun ZHANG. α-MnO2/β-MnO2 catalysts synthesized by one-pot method and their catalytic performance for the oxidation of toluene [J]. CIESC Journal, 2022, 73(8): 3615-3624. |
[8] | YE Kai, LIU Xianghua, JIANG Yue, YU Ying, ZHAO Yafei, ZHUANG Ye, ZHENG Jinbao, CHEN Binghui. Combing low-temperature plasma with CeO2/13X for toluene degradation [J]. CIESC Journal, 2021, 72(7): 3706-3715. |
[9] | SUN Jing, DONG Yilin, LI Faqi, LI Wenxiang, MA Xiaoling, WANG Wenlong. Study on adsorption and catalytic oxidation characteristics of toluene on Co3O4 modified USY molecular sieve [J]. CIESC Journal, 2021, 72(6): 3306-3315. |
[10] | Wenjun LIANG, Yuxue ZHU, Xiujuan SHI, Huipin SUN, Sida REN. Effect of Ce doping on catalytic chlorobenzene performance of Ru/TiO2 catalysts [J]. CIESC Journal, 2020, 71(8): 3585-3593. |
[11] | Changyuan TAO, Xiuxiu WANG, Zuohua LIU, Renlong LIU, Jinhua LUAN. Research on leaching rate enhancement and organic matter removal in wet-process phosphoric acid [J]. CIESC Journal, 2020, 71(10): 4792-4799. |
[12] | Shuai HE, Feng GUO, Guojun KANG, Jian YU, Xuefeng REN, Guangwen XU. Preparation of palladium-based catalysts by complexing-solvothermal method and catalytic oxidation of m-xylene [J]. CIESC Journal, 2019, 70(3): 937-943. |
[13] | ZHANG Juan, HU Yanhui, REN Tengjie, LI Weikang, ZHAO Dishun. Photocatalytic oxidation desulfurization by iron phthalocyanine supported on Ti-MCM-41 [J]. CIESC Journal, 2015, 66(9): 3437-3443. |
[14] | XU Xihua, FEI Zhaoyang, CHEN Xian, TANG Jihai, CUI Mifen, QIAO Xu. CeO2 nanoclusters stabilized in aerogel matrix as catalysts for Cl2 production from HCl oxidation [J]. CIESC Journal, 2015, 66(9): 3421-3427. |
[15] | LUO Lei, DAI Chengyi, ZHANG Anfeng, SONG Chunshan, GUO Xinwen. Review on catalytic wet peroxide oxidation process [J]. CIESC Journal, 2015, 66(9): 3319-3323. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||