CIESC Journal ›› 2018, Vol. 69 ›› Issue (11): 4683-4692.DOI: 10.11949/j.issn.0438-1157.20180562
Previous Articles Next Articles
XIAO Junyin1, YU Xiaochen1, TANG Weiqiang1, TAO Jiabo1, ZHAO Shuangliang1, LIU Honglai2
Received:
2018-05-28
Revised:
2018-07-09
Online:
2018-11-05
Published:
2018-11-05
Supported by:
supported by the Fok Ying-Tong Education Foundation for Young Teachers in Higher Education Institutions of China (151069).
肖钧尹1, 喻啸晨1, 唐伟强1, 陶佳波1, 赵双良1, 刘洪来2
通讯作者:
赵双良
基金资助:
霍英东教育基金会高等院校青年教师基金项目(151069)。
CLC Number:
XIAO Junyin, YU Xiaochen, TANG Weiqiang, TAO Jiabo, ZHAO Shuangliang, LIU Honglai. DFT study on effect of hydrophilic modification of catalyst on oxidation efficiency of hydrogen gas[J]. CIESC Journal, 2018, 69(11): 4683-4692.
肖钧尹, 喻啸晨, 唐伟强, 陶佳波, 赵双良, 刘洪来. 催化基底表面亲水改性对氢气催化氧化效率影响的密度泛函研究[J]. 化工学报, 2018, 69(11): 4683-4692.
[1] | PENG Y H, WANG L B, LUO Q Q, et al. Molecular-level insight into how hydroxyl groups boost catalytic activity in CO2 hydrogenation into methanol[J]. Chem, 2018, 4(3):613-625. |
[2] | GOUNDER R. Hydrophobic microporous and mesoporous oxides as bronsted and lewis acid catalysts for biomass conversion in liquid water[J]. Catalysis Science & Technology, 2014, 4:2877-2886. |
[3] | CANIVET J, AGUADO S, DANIEL C, et al. Engineering the environment of a catalytic metal-organic framework by postsynthetic hydrophobization[J]. Chemcatchem., 2011, 3(4):675-678. |
[4] | SHI J, WANG Y D, YANG W M, et al. Recent advances of pore system construction in zeolite-catalyzed chemical industry processes[J]. Chemical Society Reviews, 2015, 44(24):8877-903. |
[5] | YANG F, WANG B B, ZHOU S J, et al. Micropore-enriched CuO-based silica catalyst directly prepared by anionic template-induced method and its boosting catalytic activity in olefins epoxidation[J]. Microporous & Mesoporous Materials, 2017, 246:215-224. |
[6] | RYBKA J, H LTZEL A, MELNIKOV S M, et al. A new view on surface diffusion from molecular dynamics simulations of solute mobility at chromatographic interfaces[J]. Fluid Phase Equilibria, 2016, 76(9):4364-4369. |
[7] | YU W, TAO J B, YU X H, et al. A microreactor with superhydrophobic Pt-Al2O3 catalyst coating concerning oxidation of hydrogen off-gas from fuel cell[J]. Applied Energy, 2017, 185:1233-1244. |
[8] | OMOTA F, DIMIAN A C, BLIEK A. Partially hydrophobized silica supported Pd catalyst for hydrogenation reactions in aqueous media[J]. Applied Catalysis A:General, 2005, 294(2):121-130. |
[9] | HUANG G, YANG Q H, XU Q, et al. Polydimethylsiloxane coating for a palladium/MOF composite:highly improved catalytic performance by surface hydrophobization[J]. Angewandte Chemie, 2016, 128(26):7505-7509. |
[10] | YAMASHITA H, KAWASAKI S, YUAN S, et al. Efficient adsorption and photocatalytic degradation of organic pollutants diluted in water using the fluoride-modified hydrophobic titanium oxide photocatalysts:Ti-containing beta zeolite and TiO2 loaded on HMS mesoporous silica[J]. Catalysis Today, 2007, 126(3):375-381. |
[11] | SILVESTRE-ALBERO J, DOMINE M E, JORD J L, et al. Spectroscopic, calorimetric, and catalytic evidences of hydrophobicity on Ti-MCM-41 silylated materials for olefin epoxidations[J]. Applied Catalysis A:General, 2015, 507:14-25. |
[12] | LIU F J, KONG W P, QI C Z, et al. Design and synthesis of mesoporous polymer-based solid acid catalysts with excellent hydrophobicity and extraordinary catalytic activity[J]. ACS Catalysis, 2012, 2(4):565-572. |
[13] | NAKATSUKA K, MORI K, OKADA S, et al. Hydrophobic modification of Pd/SiO2@single-site mesoporous silicas by triethoxyfluorosilane:enhanced catalytic activity and selectivity for one-pot oxidation[J]. Chemistry, 2014, 20(27):8348-8354. |
[14] | CAO S L, CHEN G H, HU X J, et al. Catalytic wet air oxidation of wastewater containing ammonia and phenol over activated carbon supported Pt catalysts[J]. Catalysis Today, 2003, 88(1/2):37-47. |
[15] | CHOI W, KWON S, SHIN H D. Combustion characteristics of hydrogen-air premixed gas in a sub-millimeter scale catalytic combustor[J]. International Journal of Hydrogen Energy, 2008, 33(9):2400-2408. |
[16] | CHUANG K T, QUAIATTINI R J, THATCHER D R P, et al. Development of a wetproofed catalyst recombiner for removal ofairborne tritium[J]. Applied Catalysis, 1987, 30(2):215-224. |
[17] | LIU J, WANG C L, GUO P, et al. Linear relationship between water wetting behavior and microscopic interactions of super-hydrophilic surfaces[J]. Journal of Chemical Physics, 2013, 139(23):4703-1-4703-8. |
[18] | LAIDLER K J. A glossary of terms used in chemical kinetics, including reaction dynamics (IUPAC Recommendations 1996)[J]. Pure & Applied Chemistry, 1996, 68(1):149-192. |
[19] | TRAUTZ M. Das gesetz der reaktionsgeschwindigkeit und der gleichgewichte in gasen. bestätigung der additivität von Cv-3/2R. neue bestimmung der integrationskonstanten und der moleküldurchmesser[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 1916, 96(1):1-28. |
[20] | HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136(3B):B864-B871. |
[21] | CURTIN W A, ASHCROFT N W. Weighted-density-functional theory of inhomogeneous liquids and the freezing transition[J]. Physical Review A, 1985, 32(5):2909-2919. |
[22] | ROSENFELD Y. Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing[J]. Physical Review Letters, 1989, 63(9):980-983. |
[23] | YU Y X, WU J Z. A fundamental-measure theory for inhomogeneous associating fluids[J]. Journal of Chemical Physics, 2002, 116(16):7094-7103. |
[24] | YU Y X, WU J Z. Structures of hard-sphere fluids from a modified fundamental-measure theory[J]. Journal of Chemical Physics, 2002, 117(22):10156-10164. |
[25] | TANG Y P. First-order mean spherical approximation for inhomogeneous fluids[J]. Journal of Chemical Physics, 2004, 121(21):10605-10610. |
[26] | ZHAO S L, LIU Y, CHEN X Q, et al. Unified framework of multiscale density functional theories and its recent applications[J]. Advances in Chemical Engineering, 2015, 47:1-83. |
[27] | ZHAO S L, RAMIREZ R, VUILLEUMIER R, et al. Molecular density functional theory of solvation:from polar solvents to water[J]. Journal of Chemical Physics, 2011, 134(19):4102-1-4102-13. |
[28] | GENDRE L, RAMIREZ R, BORGIS D. Classical density functional theory of solvation in molecular solvents:Angular grid implementation[J]. Chemical Physics Letters, 2009, 474(4):366-370. |
[29] | YU X C, ZHANG J, ZHAO S L, et al. An investigation into the effect of gas adsorption on safety valve set pressure variations[J]. Chemical Engineering Science, 2018, 188:170-178. |
[30] | STEELE W A. The physical interaction of gases with crystalline solids(Ⅰ):Gas-solid energies and properties of isolated adsorbed atoms[J]. Surface Science, 1973, 36(1):317-352. |
[31] | DUIN A C T V, DASGUPTA S, LORANT F, et al. ReaxFF:a reactive force field for hydrocarbons[J]. Journal of Physical Chemistry A, 2001, 105(41):9396-9409. |
[32] | CHENOWETH K, DUIN A C T V, GODDARD W A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation[J]. Journal of Physical Chemistry A, 2008, 112(5):1040-1053. |
[33] | FANTAUZZI D, MUELLER J E, SABO L, et al. Surface buckling and subsurface oxygen:atomistic insights into the surface oxidation of Pt(111)[J]. ChemPhysChem, 2015, 16(13):2797-2802. |
[34] | FANTAUZZI D, BANDLOW J, SABO L, et al. Development of a ReaxFF potential for Pt-O systems describing the energetics and dynamics of Pt-oxide formation[J]. Phys. Chem. Chem. Phys., 2014, 16:23118-23133. |
[35] | MIACHON S, SYAKAEV V V, RAKHMATULLIN A, et al. Higher gas solubility in nanoliquids?[J]. ChemPhysChem, 2010, 9(1):78-82. |
[36] | RAKOTOVAO V, AMMAR R, MIACHON S, et al. Influence of the mesoconfining solid on gas oversolubility in nanoliquids[J]. Chemical Physics Letters, 2010, 485(4):299-303. |
[37] | RATAJSKA-GADOMSKA B, GADOMSKI W. Influence of confinement on solvation of ethanol in water studied by Raman spectroscopy[J]. Journal of Chemical Physics, 2010, 133(23):1775-5. |
[38] | HO L N, CLAUZIER S, SCHUURMAN Y, et al. Gas uptake in solvents confined in mesopores:adsorption versus enhanced solubility[J]. Journal of Physical Chemistry Letters, 2013, 4(14):2274-2278. |
[39] | HO L N, SCHUURMAN Y, FARRUSSENG D, et al. Solubility of gases in water confined in nanoporous materials:ZSM-5, MCM-41, and MIL-100[J]. Journal of Physical Chemistry C, 2015, 119(37):21547-21554. |
[1] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[2] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[3] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[4] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[5] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[6] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[7] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[8] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[9] | Yu PAN, Zihang WANG, Jiayun WANG, Ruzhu WANG, Hua ZHANG. Heat and moisture performance study of Cur-LiCl coated heat exchanger [J]. CIESC Journal, 2023, 74(3): 1352-1359. |
[10] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
[11] | Xiaowan PENG, Xiaonan GUO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Modeling and simulation of CH4/N2 separation process with two absorption-adsorption columns using ZIF-8 slurry [J]. CIESC Journal, 2023, 74(2): 784-795. |
[12] | Jinlin MENG, Yu WANG, Qunfeng ZHANG, Guanghua YE, Xinggui ZHOU. Pore network model of low-temperature nitrogen adsorption-desorption in mesoporous materials [J]. CIESC Journal, 2023, 74(2): 893-903. |
[13] |
Wan XU, Zhenbin CHEN, Huijuan ZHANG, Fangfang NIU, Ting HUO, Xingsheng LIU.
Study on synthesis, adsorption and desorption performance of linear temperature-sensitive segment polymer regulated intelligent |
[14] | Jiahao JIANG, Xiaole HUANG, Jiyun REN, Zhengrong ZHU, Lei DENG, Defu CHE. Qualitative and quantitative study on Pb2+ adsorption by biochar in solution [J]. CIESC Journal, 2023, 74(2): 830-842. |
[15] | Yingxi DANG, Peng TAN, Xiaoqin LIU, Linbing SUN. Temperature swing for CO2 capture driven by radiative cooling and solar heating [J]. CIESC Journal, 2023, 74(1): 469-478. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 242
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 556
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||