[1] |
PENG Y H, WANG L B, LUO Q Q, et al. Molecular-level insight into how hydroxyl groups boost catalytic activity in CO2 hydrogenation into methanol[J]. Chem, 2018, 4(3):613-625.
|
[2] |
GOUNDER R. Hydrophobic microporous and mesoporous oxides as bronsted and lewis acid catalysts for biomass conversion in liquid water[J]. Catalysis Science & Technology, 2014, 4:2877-2886.
|
[3] |
CANIVET J, AGUADO S, DANIEL C, et al. Engineering the environment of a catalytic metal-organic framework by postsynthetic hydrophobization[J]. Chemcatchem., 2011, 3(4):675-678.
|
[4] |
SHI J, WANG Y D, YANG W M, et al. Recent advances of pore system construction in zeolite-catalyzed chemical industry processes[J]. Chemical Society Reviews, 2015, 44(24):8877-903.
|
[5] |
YANG F, WANG B B, ZHOU S J, et al. Micropore-enriched CuO-based silica catalyst directly prepared by anionic template-induced method and its boosting catalytic activity in olefins epoxidation[J]. Microporous & Mesoporous Materials, 2017, 246:215-224.
|
[6] |
RYBKA J, H LTZEL A, MELNIKOV S M, et al. A new view on surface diffusion from molecular dynamics simulations of solute mobility at chromatographic interfaces[J]. Fluid Phase Equilibria, 2016, 76(9):4364-4369.
|
[7] |
YU W, TAO J B, YU X H, et al. A microreactor with superhydrophobic Pt-Al2O3 catalyst coating concerning oxidation of hydrogen off-gas from fuel cell[J]. Applied Energy, 2017, 185:1233-1244.
|
[8] |
OMOTA F, DIMIAN A C, BLIEK A. Partially hydrophobized silica supported Pd catalyst for hydrogenation reactions in aqueous media[J]. Applied Catalysis A:General, 2005, 294(2):121-130.
|
[9] |
HUANG G, YANG Q H, XU Q, et al. Polydimethylsiloxane coating for a palladium/MOF composite:highly improved catalytic performance by surface hydrophobization[J]. Angewandte Chemie, 2016, 128(26):7505-7509.
|
[10] |
YAMASHITA H, KAWASAKI S, YUAN S, et al. Efficient adsorption and photocatalytic degradation of organic pollutants diluted in water using the fluoride-modified hydrophobic titanium oxide photocatalysts:Ti-containing beta zeolite and TiO2 loaded on HMS mesoporous silica[J]. Catalysis Today, 2007, 126(3):375-381.
|
[11] |
SILVESTRE-ALBERO J, DOMINE M E, JORD J L, et al. Spectroscopic, calorimetric, and catalytic evidences of hydrophobicity on Ti-MCM-41 silylated materials for olefin epoxidations[J]. Applied Catalysis A:General, 2015, 507:14-25.
|
[12] |
LIU F J, KONG W P, QI C Z, et al. Design and synthesis of mesoporous polymer-based solid acid catalysts with excellent hydrophobicity and extraordinary catalytic activity[J]. ACS Catalysis, 2012, 2(4):565-572.
|
[13] |
NAKATSUKA K, MORI K, OKADA S, et al. Hydrophobic modification of Pd/SiO2@single-site mesoporous silicas by triethoxyfluorosilane:enhanced catalytic activity and selectivity for one-pot oxidation[J]. Chemistry, 2014, 20(27):8348-8354.
|
[14] |
CAO S L, CHEN G H, HU X J, et al. Catalytic wet air oxidation of wastewater containing ammonia and phenol over activated carbon supported Pt catalysts[J]. Catalysis Today, 2003, 88(1/2):37-47.
|
[15] |
CHOI W, KWON S, SHIN H D. Combustion characteristics of hydrogen-air premixed gas in a sub-millimeter scale catalytic combustor[J]. International Journal of Hydrogen Energy, 2008, 33(9):2400-2408.
|
[16] |
CHUANG K T, QUAIATTINI R J, THATCHER D R P, et al. Development of a wetproofed catalyst recombiner for removal ofairborne tritium[J]. Applied Catalysis, 1987, 30(2):215-224.
|
[17] |
LIU J, WANG C L, GUO P, et al. Linear relationship between water wetting behavior and microscopic interactions of super-hydrophilic surfaces[J]. Journal of Chemical Physics, 2013, 139(23):4703-1-4703-8.
|
[18] |
LAIDLER K J. A glossary of terms used in chemical kinetics, including reaction dynamics (IUPAC Recommendations 1996)[J]. Pure & Applied Chemistry, 1996, 68(1):149-192.
|
[19] |
TRAUTZ M. Das gesetz der reaktionsgeschwindigkeit und der gleichgewichte in gasen. bestätigung der additivität von Cv-3/2R. neue bestimmung der integrationskonstanten und der moleküldurchmesser[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 1916, 96(1):1-28.
|
[20] |
HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136(3B):B864-B871.
|
[21] |
CURTIN W A, ASHCROFT N W. Weighted-density-functional theory of inhomogeneous liquids and the freezing transition[J]. Physical Review A, 1985, 32(5):2909-2919.
|
[22] |
ROSENFELD Y. Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing[J]. Physical Review Letters, 1989, 63(9):980-983.
|
[23] |
YU Y X, WU J Z. A fundamental-measure theory for inhomogeneous associating fluids[J]. Journal of Chemical Physics, 2002, 116(16):7094-7103.
|
[24] |
YU Y X, WU J Z. Structures of hard-sphere fluids from a modified fundamental-measure theory[J]. Journal of Chemical Physics, 2002, 117(22):10156-10164.
|
[25] |
TANG Y P. First-order mean spherical approximation for inhomogeneous fluids[J]. Journal of Chemical Physics, 2004, 121(21):10605-10610.
|
[26] |
ZHAO S L, LIU Y, CHEN X Q, et al. Unified framework of multiscale density functional theories and its recent applications[J]. Advances in Chemical Engineering, 2015, 47:1-83.
|
[27] |
ZHAO S L, RAMIREZ R, VUILLEUMIER R, et al. Molecular density functional theory of solvation:from polar solvents to water[J]. Journal of Chemical Physics, 2011, 134(19):4102-1-4102-13.
|
[28] |
GENDRE L, RAMIREZ R, BORGIS D. Classical density functional theory of solvation in molecular solvents:Angular grid implementation[J]. Chemical Physics Letters, 2009, 474(4):366-370.
|
[29] |
YU X C, ZHANG J, ZHAO S L, et al. An investigation into the effect of gas adsorption on safety valve set pressure variations[J]. Chemical Engineering Science, 2018, 188:170-178.
|
[30] |
STEELE W A. The physical interaction of gases with crystalline solids(Ⅰ):Gas-solid energies and properties of isolated adsorbed atoms[J]. Surface Science, 1973, 36(1):317-352.
|
[31] |
DUIN A C T V, DASGUPTA S, LORANT F, et al. ReaxFF:a reactive force field for hydrocarbons[J]. Journal of Physical Chemistry A, 2001, 105(41):9396-9409.
|
[32] |
CHENOWETH K, DUIN A C T V, GODDARD W A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation[J]. Journal of Physical Chemistry A, 2008, 112(5):1040-1053.
|
[33] |
FANTAUZZI D, MUELLER J E, SABO L, et al. Surface buckling and subsurface oxygen:atomistic insights into the surface oxidation of Pt(111)[J]. ChemPhysChem, 2015, 16(13):2797-2802.
|
[34] |
FANTAUZZI D, BANDLOW J, SABO L, et al. Development of a ReaxFF potential for Pt-O systems describing the energetics and dynamics of Pt-oxide formation[J]. Phys. Chem. Chem. Phys., 2014, 16:23118-23133.
|
[35] |
MIACHON S, SYAKAEV V V, RAKHMATULLIN A, et al. Higher gas solubility in nanoliquids?[J]. ChemPhysChem, 2010, 9(1):78-82.
|
[36] |
RAKOTOVAO V, AMMAR R, MIACHON S, et al. Influence of the mesoconfining solid on gas oversolubility in nanoliquids[J]. Chemical Physics Letters, 2010, 485(4):299-303.
|
[37] |
RATAJSKA-GADOMSKA B, GADOMSKI W. Influence of confinement on solvation of ethanol in water studied by Raman spectroscopy[J]. Journal of Chemical Physics, 2010, 133(23):1775-5.
|
[38] |
HO L N, CLAUZIER S, SCHUURMAN Y, et al. Gas uptake in solvents confined in mesopores:adsorption versus enhanced solubility[J]. Journal of Physical Chemistry Letters, 2013, 4(14):2274-2278.
|
[39] |
HO L N, SCHUURMAN Y, FARRUSSENG D, et al. Solubility of gases in water confined in nanoporous materials:ZSM-5, MCM-41, and MIL-100[J]. Journal of Physical Chemistry C, 2015, 119(37):21547-21554.
|